$$$\sin{\left(\frac{3 x}{2} \right)}$$$의 도함수
관련 계산기: 로그 미분 계산기, 암시적 미분 계산기 (단계별 풀이)
사용자 입력
$$$\frac{d}{dx} \left(\sin{\left(\frac{3 x}{2} \right)}\right)$$$을(를) 구하시오.
풀이
함수 $$$\sin{\left(\frac{3 x}{2} \right)}$$$는 두 함수 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$와 $$$g{\left(x \right)} = \frac{3 x}{2}$$$의 합성함수 $$$f{\left(g{\left(x \right)} \right)}$$$이다.
연쇄법칙 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$을(를) 적용하십시오:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(\frac{3 x}{2} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(\frac{3 x}{2}\right)\right)}$$사인 함수의 도함수는 $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\frac{3 x}{2}\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(\frac{3 x}{2}\right)$$역치환:
$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(\frac{3 x}{2}\right) = \cos{\left({\color{red}\left(\frac{3 x}{2}\right)} \right)} \frac{d}{dx} \left(\frac{3 x}{2}\right)$$상수배 법칙 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$을 $$$c = \frac{3}{2}$$$와 $$$f{\left(x \right)} = x$$$에 적용합니다:
$$\cos{\left(\frac{3 x}{2} \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{3 x}{2}\right)\right)} = \cos{\left(\frac{3 x}{2} \right)} {\color{red}\left(\frac{3 \frac{d}{dx} \left(x\right)}{2}\right)}$$멱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$을 $$$n = 1$$$에 대해 적용하면, 즉 $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{3 \cos{\left(\frac{3 x}{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2} = \frac{3 \cos{\left(\frac{3 x}{2} \right)} {\color{red}\left(1\right)}}{2}$$따라서, $$$\frac{d}{dx} \left(\sin{\left(\frac{3 x}{2} \right)}\right) = \frac{3 \cos{\left(\frac{3 x}{2} \right)}}{2}$$$.
정답
$$$\frac{d}{dx} \left(\sin{\left(\frac{3 x}{2} \right)}\right) = \frac{3 \cos{\left(\frac{3 x}{2} \right)}}{2}$$$A