$$$\ln\left(x^{2} + 1\right)$$$의 도함수
사용자 입력
$$$\frac{d}{dx} \left(\ln\left(x^{2} + 1\right)\right)$$$을(를) 구하시오.
풀이
함수 $$$\ln\left(x^{2} + 1\right)$$$는 두 함수 $$$f{\left(u \right)} = \ln\left(u\right)$$$와 $$$g{\left(x \right)} = x^{2} + 1$$$의 합성함수 $$$f{\left(g{\left(x \right)} \right)}$$$이다.
연쇄법칙 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$을(를) 적용하십시오:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(x^{2} + 1\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x^{2} + 1\right)\right)}$$자연로그 함수의 도함수는 $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x^{2} + 1\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x^{2} + 1\right)$$역치환:
$$\frac{\frac{d}{dx} \left(x^{2} + 1\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(x^{2} + 1\right)}{{\color{red}\left(x^{2} + 1\right)}}$$합/차의 도함수는 도함수들의 합/차이다:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(x^{2} + 1\right)\right)}}{x^{2} + 1} = \frac{{\color{red}\left(\frac{d}{dx} \left(x^{2}\right) + \frac{d}{dx} \left(1\right)\right)}}{x^{2} + 1}$$상수의 도함수는 $$$0$$$입니다:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(x^{2}\right)}{x^{2} + 1} = \frac{{\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{2}\right)}{x^{2} + 1}$$거듭제곱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$을 $$$n = 2$$$에 적용합니다:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)}}{x^{2} + 1} = \frac{{\color{red}\left(2 x\right)}}{x^{2} + 1}$$따라서, $$$\frac{d}{dx} \left(\ln\left(x^{2} + 1\right)\right) = \frac{2 x}{x^{2} + 1}$$$.
정답
$$$\frac{d}{dx} \left(\ln\left(x^{2} + 1\right)\right) = \frac{2 x}{x^{2} + 1}$$$A