$$$\frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}$$$의 도함수
관련 계산기: 로그 미분 계산기, 암시적 미분 계산기 (단계별 풀이)
사용자 입력
$$$\frac{d}{dt} \left(\frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right)$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$을 $$$c = 7$$$와 $$$f{\left(t \right)} = \frac{1}{\sqrt{9 t^{4} + 4 t^{2} + 49}}$$$에 적용합니다:
$${\color{red}\left(\frac{d}{dt} \left(\frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right)\right)} = {\color{red}\left(7 \frac{d}{dt} \left(\frac{1}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right)\right)}$$함수 $$$\frac{1}{\sqrt{9 t^{4} + 4 t^{2} + 49}}$$$는 두 함수 $$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$와 $$$g{\left(t \right)} = 9 t^{4} + 4 t^{2} + 49$$$의 합성함수 $$$f{\left(g{\left(t \right)} \right)}$$$이다.
연쇄법칙 $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$을(를) 적용하십시오:
$$7 {\color{red}\left(\frac{d}{dt} \left(\frac{1}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right)\right)} = 7 {\color{red}\left(\frac{d}{du} \left(\frac{1}{\sqrt{u}}\right) \frac{d}{dt} \left(9 t^{4} + 4 t^{2} + 49\right)\right)}$$거듭제곱법칙 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$을 $$$n = - \frac{1}{2}$$$에 적용합니다:
$$7 {\color{red}\left(\frac{d}{du} \left(\frac{1}{\sqrt{u}}\right)\right)} \frac{d}{dt} \left(9 t^{4} + 4 t^{2} + 49\right) = 7 {\color{red}\left(- \frac{1}{2 u^{\frac{3}{2}}}\right)} \frac{d}{dt} \left(9 t^{4} + 4 t^{2} + 49\right)$$역치환:
$$- \frac{7 \frac{d}{dt} \left(9 t^{4} + 4 t^{2} + 49\right)}{2 {\color{red}\left(u\right)}^{\frac{3}{2}}} = - \frac{7 \frac{d}{dt} \left(9 t^{4} + 4 t^{2} + 49\right)}{2 {\color{red}\left(9 t^{4} + 4 t^{2} + 49\right)}^{\frac{3}{2}}}$$합/차의 도함수는 도함수들의 합/차이다:
$$- \frac{7 {\color{red}\left(\frac{d}{dt} \left(9 t^{4} + 4 t^{2} + 49\right)\right)}}{2 \left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}} = - \frac{7 {\color{red}\left(\frac{d}{dt} \left(9 t^{4}\right) + \frac{d}{dt} \left(4 t^{2}\right) + \frac{d}{dt} \left(49\right)\right)}}{2 \left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}}$$상수배 법칙 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$을 $$$c = 4$$$와 $$$f{\left(t \right)} = t^{2}$$$에 적용합니다:
$$- \frac{7 \left({\color{red}\left(\frac{d}{dt} \left(4 t^{2}\right)\right)} + \frac{d}{dt} \left(49\right) + \frac{d}{dt} \left(9 t^{4}\right)\right)}{2 \left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}} = - \frac{7 \left({\color{red}\left(4 \frac{d}{dt} \left(t^{2}\right)\right)} + \frac{d}{dt} \left(49\right) + \frac{d}{dt} \left(9 t^{4}\right)\right)}{2 \left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}}$$거듭제곱법칙 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$을 $$$n = 2$$$에 적용합니다:
$$- \frac{7 \left(4 {\color{red}\left(\frac{d}{dt} \left(t^{2}\right)\right)} + \frac{d}{dt} \left(49\right) + \frac{d}{dt} \left(9 t^{4}\right)\right)}{2 \left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}} = - \frac{7 \left(4 {\color{red}\left(2 t\right)} + \frac{d}{dt} \left(49\right) + \frac{d}{dt} \left(9 t^{4}\right)\right)}{2 \left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}}$$상수의 도함수는 $$$0$$$입니다:
$$- \frac{7 \left(8 t + {\color{red}\left(\frac{d}{dt} \left(49\right)\right)} + \frac{d}{dt} \left(9 t^{4}\right)\right)}{2 \left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}} = - \frac{7 \left(8 t + {\color{red}\left(0\right)} + \frac{d}{dt} \left(9 t^{4}\right)\right)}{2 \left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}}$$상수배 법칙 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$을 $$$c = 9$$$와 $$$f{\left(t \right)} = t^{4}$$$에 적용합니다:
$$- \frac{7 \left(8 t + {\color{red}\left(\frac{d}{dt} \left(9 t^{4}\right)\right)}\right)}{2 \left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}} = - \frac{7 \left(8 t + {\color{red}\left(9 \frac{d}{dt} \left(t^{4}\right)\right)}\right)}{2 \left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}}$$거듭제곱법칙 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$을 $$$n = 4$$$에 적용합니다:
$$- \frac{7 \left(8 t + 9 {\color{red}\left(\frac{d}{dt} \left(t^{4}\right)\right)}\right)}{2 \left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}} = - \frac{7 \left(8 t + 9 {\color{red}\left(4 t^{3}\right)}\right)}{2 \left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}}$$간단히 하시오:
$$- \frac{7 \left(36 t^{3} + 8 t\right)}{2 \left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}} = - \frac{14 t \left(9 t^{2} + 2\right)}{\left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}}$$따라서, $$$\frac{d}{dt} \left(\frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right) = - \frac{14 t \left(9 t^{2} + 2\right)}{\left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}}$$$.
정답
$$$\frac{d}{dt} \left(\frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right) = - \frac{14 t \left(9 t^{2} + 2\right)}{\left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}}$$$A