$$$256 x^{2} + 16$$$의 도함수
사용자 입력
$$$\frac{d}{dx} \left(256 x^{2} + 16\right)$$$을(를) 구하시오.
풀이
합/차의 도함수는 도함수들의 합/차이다:
$${\color{red}\left(\frac{d}{dx} \left(256 x^{2} + 16\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(256 x^{2}\right) + \frac{d}{dx} \left(16\right)\right)}$$상수배 법칙 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$을 $$$c = 256$$$와 $$$f{\left(x \right)} = x^{2}$$$에 적용합니다:
$${\color{red}\left(\frac{d}{dx} \left(256 x^{2}\right)\right)} + \frac{d}{dx} \left(16\right) = {\color{red}\left(256 \frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(16\right)$$상수의 도함수는 $$$0$$$입니다:
$${\color{red}\left(\frac{d}{dx} \left(16\right)\right)} + 256 \frac{d}{dx} \left(x^{2}\right) = {\color{red}\left(0\right)} + 256 \frac{d}{dx} \left(x^{2}\right)$$거듭제곱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$을 $$$n = 2$$$에 적용합니다:
$$256 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = 256 {\color{red}\left(2 x\right)}$$따라서, $$$\frac{d}{dx} \left(256 x^{2} + 16\right) = 512 x$$$.
정답
$$$\frac{d}{dx} \left(256 x^{2} + 16\right) = 512 x$$$A
Please try a new game Rotatly