$$$x$$$에 대한 $$$\frac{2 \pi x}{l}$$$의 도함수
사용자 입력
$$$\frac{d}{dx} \left(\frac{2 \pi x}{l}\right)$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$을 $$$c = \frac{2 \pi}{l}$$$와 $$$f{\left(x \right)} = x$$$에 적용합니다:
$${\color{red}\left(\frac{d}{dx} \left(\frac{2 \pi x}{l}\right)\right)} = {\color{red}\left(\frac{2 \pi}{l} \frac{d}{dx} \left(x\right)\right)}$$멱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$을 $$$n = 1$$$에 대해 적용하면, 즉 $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{2 \pi {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{l} = \frac{2 \pi {\color{red}\left(1\right)}}{l}$$따라서, $$$\frac{d}{dx} \left(\frac{2 \pi x}{l}\right) = \frac{2 \pi}{l}$$$.
정답
$$$\frac{d}{dx} \left(\frac{2 \pi x}{l}\right) = \frac{2 \pi}{l}$$$A
Please try a new game Rotatly