$$$1 - \frac{1}{x}$$$의 도함수
사용자 입력
$$$\frac{d}{dx} \left(1 - \frac{1}{x}\right)$$$을(를) 구하시오.
풀이
합/차의 도함수는 도함수들의 합/차이다:
$${\color{red}\left(\frac{d}{dx} \left(1 - \frac{1}{x}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(1\right) - \frac{d}{dx} \left(\frac{1}{x}\right)\right)}$$거듭제곱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$을 $$$n = -1$$$에 적용합니다:
$$- {\color{red}\left(\frac{d}{dx} \left(\frac{1}{x}\right)\right)} + \frac{d}{dx} \left(1\right) = - {\color{red}\left(- \frac{1}{x^{2}}\right)} + \frac{d}{dx} \left(1\right)$$상수의 도함수는 $$$0$$$입니다:
$${\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{1}{x^{2}} = {\color{red}\left(0\right)} + \frac{1}{x^{2}}$$따라서, $$$\frac{d}{dx} \left(1 - \frac{1}{x}\right) = \frac{1}{x^{2}}$$$.
정답
$$$\frac{d}{dx} \left(1 - \frac{1}{x}\right) = \frac{1}{x^{2}}$$$A
Please try a new game Rotatly