$$$- \frac{\sqrt{2}}{4 t^{\frac{3}{2}}}$$$의 도함수
관련 계산기: 로그 미분 계산기, 암시적 미분 계산기 (단계별 풀이)
사용자 입력
$$$\frac{d}{dt} \left(- \frac{\sqrt{2}}{4 t^{\frac{3}{2}}}\right)$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$을 $$$c = - \frac{\sqrt{2}}{4}$$$와 $$$f{\left(t \right)} = \frac{1}{t^{\frac{3}{2}}}$$$에 적용합니다:
$${\color{red}\left(\frac{d}{dt} \left(- \frac{\sqrt{2}}{4 t^{\frac{3}{2}}}\right)\right)} = {\color{red}\left(- \frac{\sqrt{2}}{4} \frac{d}{dt} \left(\frac{1}{t^{\frac{3}{2}}}\right)\right)}$$거듭제곱법칙 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$을 $$$n = - \frac{3}{2}$$$에 적용합니다:
$$- \frac{\sqrt{2} {\color{red}\left(\frac{d}{dt} \left(\frac{1}{t^{\frac{3}{2}}}\right)\right)}}{4} = - \frac{\sqrt{2} {\color{red}\left(- \frac{3}{2 t^{\frac{5}{2}}}\right)}}{4}$$따라서, $$$\frac{d}{dt} \left(- \frac{\sqrt{2}}{4 t^{\frac{3}{2}}}\right) = \frac{3 \sqrt{2}}{8 t^{\frac{5}{2}}}$$$.
정답
$$$\frac{d}{dt} \left(- \frac{\sqrt{2}}{4 t^{\frac{3}{2}}}\right) = \frac{3 \sqrt{2}}{8 t^{\frac{5}{2}}}$$$A