$$$- 2 e^{t} \sin{\left(t \right)}$$$의 도함수
관련 계산기: 로그 미분 계산기, 암시적 미분 계산기 (단계별 풀이)
사용자 입력
$$$\frac{d}{dt} \left(- 2 e^{t} \sin{\left(t \right)}\right)$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$을 $$$c = -2$$$와 $$$f{\left(t \right)} = e^{t} \sin{\left(t \right)}$$$에 적용합니다:
$${\color{red}\left(\frac{d}{dt} \left(- 2 e^{t} \sin{\left(t \right)}\right)\right)} = {\color{red}\left(- 2 \frac{d}{dt} \left(e^{t} \sin{\left(t \right)}\right)\right)}$$$$$f{\left(t \right)} = e^{t}$$$와 $$$g{\left(t \right)} = \sin{\left(t \right)}$$$에 대해 곱의 미분법칙 $$$\frac{d}{dt} \left(f{\left(t \right)} g{\left(t \right)}\right) = \frac{d}{dt} \left(f{\left(t \right)}\right) g{\left(t \right)} + f{\left(t \right)} \frac{d}{dt} \left(g{\left(t \right)}\right)$$$을 적용하십시오:
$$- 2 {\color{red}\left(\frac{d}{dt} \left(e^{t} \sin{\left(t \right)}\right)\right)} = - 2 {\color{red}\left(\frac{d}{dt} \left(e^{t}\right) \sin{\left(t \right)} + e^{t} \frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)}$$지수함수의 도함수는 $$$\frac{d}{dt} \left(e^{t}\right) = e^{t}$$$:
$$- 2 e^{t} \frac{d}{dt} \left(\sin{\left(t \right)}\right) - 2 \sin{\left(t \right)} {\color{red}\left(\frac{d}{dt} \left(e^{t}\right)\right)} = - 2 e^{t} \frac{d}{dt} \left(\sin{\left(t \right)}\right) - 2 \sin{\left(t \right)} {\color{red}\left(e^{t}\right)}$$사인 함수의 도함수는 $$$\frac{d}{dt} \left(\sin{\left(t \right)}\right) = \cos{\left(t \right)}$$$:
$$- 2 e^{t} \sin{\left(t \right)} - 2 e^{t} {\color{red}\left(\frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)} = - 2 e^{t} \sin{\left(t \right)} - 2 e^{t} {\color{red}\left(\cos{\left(t \right)}\right)}$$간단히 하시오:
$$- 2 e^{t} \sin{\left(t \right)} - 2 e^{t} \cos{\left(t \right)} = - 2 \sqrt{2} e^{t} \sin{\left(t + \frac{\pi}{4} \right)}$$따라서, $$$\frac{d}{dt} \left(- 2 e^{t} \sin{\left(t \right)}\right) = - 2 \sqrt{2} e^{t} \sin{\left(t + \frac{\pi}{4} \right)}$$$.
정답
$$$\frac{d}{dt} \left(- 2 e^{t} \sin{\left(t \right)}\right) = - 2 \sqrt{2} e^{t} \sin{\left(t + \frac{\pi}{4} \right)}$$$A