$$$\frac{x^{3} - 2 x^{2}}{x^{2} + 1}$$$의 도함수

계산기는 단계별 풀이와 함께 $$$\frac{x^{3} - 2 x^{2}}{x^{2} + 1}$$$의 도함수를 구합니다.

관련 계산기: 로그 미분 계산기, 암시적 미분 계산기 (단계별 풀이)

자동 감지를 위해 비워 두세요.
특정 점에서의 도함수가 필요하지 않다면 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\frac{d}{dx} \left(\frac{x^{3} - 2 x^{2}}{x^{2} + 1}\right)$$$을(를) 구하시오.

풀이

$$$f{\left(x \right)} = x^{3} - 2 x^{2}$$$$$$g{\left(x \right)} = x^{2} + 1$$$에 대해 몫의 미분법칙 $$$\frac{d}{dx} \left(\frac{f{\left(x \right)}}{g{\left(x \right)}}\right) = \frac{\frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} - f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)}{g^{2}{\left(x \right)}}$$$을 적용하십시오:

$${\color{red}\left(\frac{d}{dx} \left(\frac{x^{3} - 2 x^{2}}{x^{2} + 1}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(x^{3} - 2 x^{2}\right) \left(x^{2} + 1\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}\right)}$$

합/차의 도함수는 도함수들의 합/차이다:

$$\frac{\left(x^{2} + 1\right) {\color{red}\left(\frac{d}{dx} \left(x^{3} - 2 x^{2}\right)\right)} - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) - \frac{d}{dx} \left(2 x^{2}\right)\right)} - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$

거듭제곱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$$$$n = 3$$$에 적용합니다:

$$\frac{\left(x^{2} + 1\right) \left({\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} - \frac{d}{dx} \left(2 x^{2}\right)\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left({\color{red}\left(3 x^{2}\right)} - \frac{d}{dx} \left(2 x^{2}\right)\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$

상수배 법칙 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$$$$c = 2$$$$$$f{\left(x \right)} = x^{2}$$$에 적용합니다:

$$\frac{\left(x^{2} + 1\right) \left(3 x^{2} - {\color{red}\left(\frac{d}{dx} \left(2 x^{2}\right)\right)}\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left(3 x^{2} - {\color{red}\left(2 \frac{d}{dx} \left(x^{2}\right)\right)}\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$

거듭제곱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$$$$n = 2$$$에 적용합니다:

$$\frac{\left(x^{2} + 1\right) \left(3 x^{2} - 2 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)}\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left(3 x^{2} - 2 {\color{red}\left(2 x\right)}\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$

합/차의 도함수는 도함수들의 합/차이다:

$$\frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) {\color{red}\left(\frac{d}{dx} \left(x^{2} + 1\right)\right)}}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) + \frac{d}{dx} \left(1\right)\right)}}{\left(x^{2} + 1\right)^{2}}$$

상수의 도함수는 $$$0$$$입니다:

$$\frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) \left({\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(x^{2}\right)\right)}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{2}\right)\right)}{\left(x^{2} + 1\right)^{2}}$$

거듭제곱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$$$$n = 2$$$에 적용합니다:

$$\frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)}}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) {\color{red}\left(2 x\right)}}{\left(x^{2} + 1\right)^{2}}$$

간단히 하시오:

$$\frac{- 2 x \left(x^{3} - 2 x^{2}\right) + \left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right)}{\left(x^{2} + 1\right)^{2}} = \frac{x \left(x - 1\right) \left(x^{2} + x + 4\right)}{\left(x^{2} + 1\right)^{2}}$$

따라서, $$$\frac{d}{dx} \left(\frac{x^{3} - 2 x^{2}}{x^{2} + 1}\right) = \frac{x \left(x - 1\right) \left(x^{2} + x + 4\right)}{\left(x^{2} + 1\right)^{2}}$$$.

정답

$$$\frac{d}{dx} \left(\frac{x^{3} - 2 x^{2}}{x^{2} + 1}\right) = \frac{x \left(x - 1\right) \left(x^{2} + x + 4\right)}{\left(x^{2} + 1\right)^{2}}$$$A


Please try a new game Rotatly