$$$x^{4} - x^{3}$$$の積分
入力内容
$$$\int \left(x^{4} - x^{3}\right)\, dx$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(x^{4} - x^{3}\right)d x}}} = {\color{red}{\left(- \int{x^{3} d x} + \int{x^{4} d x}\right)}}$$
$$$n=4$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$- \int{x^{3} d x} + {\color{red}{\int{x^{4} d x}}}=- \int{x^{3} d x} + {\color{red}{\frac{x^{1 + 4}}{1 + 4}}}=- \int{x^{3} d x} + {\color{red}{\left(\frac{x^{5}}{5}\right)}}$$
$$$n=3$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{x^{5}}{5} - {\color{red}{\int{x^{3} d x}}}=\frac{x^{5}}{5} - {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=\frac{x^{5}}{5} - {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
したがって、
$$\int{\left(x^{4} - x^{3}\right)d x} = \frac{x^{5}}{5} - \frac{x^{4}}{4}$$
簡単化せよ:
$$\int{\left(x^{4} - x^{3}\right)d x} = \frac{x^{4} \left(4 x - 5\right)}{20}$$
積分定数を加える:
$$\int{\left(x^{4} - x^{3}\right)d x} = \frac{x^{4} \left(4 x - 5\right)}{20}+C$$
解答
$$$\int \left(x^{4} - x^{3}\right)\, dx = \frac{x^{4} \left(4 x - 5\right)}{20} + C$$$A