$$$x^{4} - x^{3}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \left(x^{4} - x^{3}\right)\, dx$$$.
Çözüm
Her terimin integralini alın:
$${\color{red}{\int{\left(x^{4} - x^{3}\right)d x}}} = {\color{red}{\left(- \int{x^{3} d x} + \int{x^{4} d x}\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=4$$$ ile uygulayın:
$$- \int{x^{3} d x} + {\color{red}{\int{x^{4} d x}}}=- \int{x^{3} d x} + {\color{red}{\frac{x^{1 + 4}}{1 + 4}}}=- \int{x^{3} d x} + {\color{red}{\left(\frac{x^{5}}{5}\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=3$$$ ile uygulayın:
$$\frac{x^{5}}{5} - {\color{red}{\int{x^{3} d x}}}=\frac{x^{5}}{5} - {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=\frac{x^{5}}{5} - {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
Dolayısıyla,
$$\int{\left(x^{4} - x^{3}\right)d x} = \frac{x^{5}}{5} - \frac{x^{4}}{4}$$
Sadeleştirin:
$$\int{\left(x^{4} - x^{3}\right)d x} = \frac{x^{4} \left(4 x - 5\right)}{20}$$
İntegrasyon sabitini ekleyin:
$$\int{\left(x^{4} - x^{3}\right)d x} = \frac{x^{4} \left(4 x - 5\right)}{20}+C$$
Cevap
$$$\int \left(x^{4} - x^{3}\right)\, dx = \frac{x^{4} \left(4 x - 5\right)}{20} + C$$$A