$$$\frac{1}{\sin{\left(x \right)}}$$$の積分

この計算機は、手順を示しながら$$$\frac{1}{\sin{\left(x \right)}}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{1}{\sin{\left(x \right)}}\, dx$$$ を求めよ。

解答

二倍角の公式を用いて正弦を書き換える $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:

$${\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}}$$

分子と分母に$$$\sec^2\left(\frac{x}{2} \right)$$$を掛ける:

$${\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}}$$

$$$u=\tan{\left(\frac{x}{2} \right)}$$$ とする。

すると $$$du=\left(\tan{\left(\frac{x}{2} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$(手順は»で確認できます)、$$$\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du$$$ となります。

したがって、

$${\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:

$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

次のことを思い出してください $$$u=\tan{\left(\frac{x}{2} \right)}$$$:

$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} \right)}}}}\right| \right)}$$

したがって、

$$\int{\frac{1}{\sin{\left(x \right)}} d x} = \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)}$$

積分定数を加える:

$$\int{\frac{1}{\sin{\left(x \right)}} d x} = \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)}+C$$

解答

$$$\int \frac{1}{\sin{\left(x \right)}}\, dx = \ln\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right|\right) + C$$$A


Please try a new game Rotatly