$$$d \delta \cos^{4}{\left(\delta \right)}$$$$$$d$$$ に関する積分

この計算機は、$$$d$$$ に関して $$$d \delta \cos^{4}{\left(\delta \right)}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int d \delta \cos^{4}{\left(\delta \right)}\, dd$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(d \right)}\, dd = c \int f{\left(d \right)}\, dd$$$ を、$$$c=\delta \cos^{4}{\left(\delta \right)}$$$$$$f{\left(d \right)} = d$$$ に対して適用する:

$${\color{red}{\int{d \delta \cos^{4}{\left(\delta \right)} d d}}} = {\color{red}{\delta \cos^{4}{\left(\delta \right)} \int{d d d}}}$$

$$$n=1$$$ を用いて、べき乗の法則 $$$\int d^{n}\, dd = \frac{d^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$\delta \cos^{4}{\left(\delta \right)} {\color{red}{\int{d d d}}}=\delta \cos^{4}{\left(\delta \right)} {\color{red}{\frac{d^{1 + 1}}{1 + 1}}}=\delta \cos^{4}{\left(\delta \right)} {\color{red}{\left(\frac{d^{2}}{2}\right)}}$$

したがって、

$$\int{d \delta \cos^{4}{\left(\delta \right)} d d} = \frac{d^{2} \delta \cos^{4}{\left(\delta \right)}}{2}$$

積分定数を加える:

$$\int{d \delta \cos^{4}{\left(\delta \right)} d d} = \frac{d^{2} \delta \cos^{4}{\left(\delta \right)}}{2}+C$$

解答

$$$\int d \delta \cos^{4}{\left(\delta \right)}\, dd = \frac{d^{2} \delta \cos^{4}{\left(\delta \right)}}{2} + C$$$A


Please try a new game Rotatly