Integrale di $$$d \delta \cos^{4}{\left(\delta \right)}$$$ rispetto a $$$d$$$

Il calcolatore troverà l'integrale/antiderivata di $$$d \delta \cos^{4}{\left(\delta \right)}$$$ rispetto a $$$d$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int d \delta \cos^{4}{\left(\delta \right)}\, dd$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(d \right)}\, dd = c \int f{\left(d \right)}\, dd$$$ con $$$c=\delta \cos^{4}{\left(\delta \right)}$$$ e $$$f{\left(d \right)} = d$$$:

$${\color{red}{\int{d \delta \cos^{4}{\left(\delta \right)} d d}}} = {\color{red}{\delta \cos^{4}{\left(\delta \right)} \int{d d d}}}$$

Applica la regola della potenza $$$\int d^{n}\, dd = \frac{d^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$\delta \cos^{4}{\left(\delta \right)} {\color{red}{\int{d d d}}}=\delta \cos^{4}{\left(\delta \right)} {\color{red}{\frac{d^{1 + 1}}{1 + 1}}}=\delta \cos^{4}{\left(\delta \right)} {\color{red}{\left(\frac{d^{2}}{2}\right)}}$$

Pertanto,

$$\int{d \delta \cos^{4}{\left(\delta \right)} d d} = \frac{d^{2} \delta \cos^{4}{\left(\delta \right)}}{2}$$

Aggiungi la costante di integrazione:

$$\int{d \delta \cos^{4}{\left(\delta \right)} d d} = \frac{d^{2} \delta \cos^{4}{\left(\delta \right)}}{2}+C$$

Risposta

$$$\int d \delta \cos^{4}{\left(\delta \right)}\, dd = \frac{d^{2} \delta \cos^{4}{\left(\delta \right)}}{2} + C$$$A


Please try a new game Rotatly