$$$- \frac{x}{2} - \sin{\left(e x \right)} + \cos{\left(x_{1} \right)}$$$ の $$$x$$$ に関する積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \left(- \frac{x}{2} - \sin{\left(e x \right)} + \cos{\left(x_{1} \right)}\right)\, dx$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(- \frac{x}{2} - \sin{\left(e x \right)} + \cos{\left(x_{1} \right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{x}{2} d x} - \int{\sin{\left(e x \right)} d x} + \int{\cos{\left(x_{1} \right)} d x}\right)}}$$
$$$u=e x$$$ とする。
すると $$$du=\left(e x\right)^{\prime }dx = e dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{e}$$$ となります。
積分は次のようになります
$$- \int{\frac{x}{2} d x} + \int{\cos{\left(x_{1} \right)} d x} - {\color{red}{\int{\sin{\left(e x \right)} d x}}} = - \int{\frac{x}{2} d x} + \int{\cos{\left(x_{1} \right)} d x} - {\color{red}{\int{\frac{\sin{\left(u \right)}}{e} d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=e^{-1}$$$ と $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ に対して適用する:
$$- \int{\frac{x}{2} d x} + \int{\cos{\left(x_{1} \right)} d x} - {\color{red}{\int{\frac{\sin{\left(u \right)}}{e} d u}}} = - \int{\frac{x}{2} d x} + \int{\cos{\left(x_{1} \right)} d x} - {\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{e}}}$$
正弦関数の不定積分は$$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$です:
$$- \int{\frac{x}{2} d x} + \int{\cos{\left(x_{1} \right)} d x} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{e} = - \int{\frac{x}{2} d x} + \int{\cos{\left(x_{1} \right)} d x} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{e}$$
次のことを思い出してください $$$u=e x$$$:
$$- \int{\frac{x}{2} d x} + \int{\cos{\left(x_{1} \right)} d x} + \frac{\cos{\left({\color{red}{u}} \right)}}{e} = - \int{\frac{x}{2} d x} + \int{\cos{\left(x_{1} \right)} d x} + \frac{\cos{\left({\color{red}{e x}} \right)}}{e}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(x \right)} = x$$$ に対して適用する:
$$\frac{\cos{\left(e x \right)}}{e} + \int{\cos{\left(x_{1} \right)} d x} - {\color{red}{\int{\frac{x}{2} d x}}} = \frac{\cos{\left(e x \right)}}{e} + \int{\cos{\left(x_{1} \right)} d x} - {\color{red}{\left(\frac{\int{x d x}}{2}\right)}}$$
$$$n=1$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{\cos{\left(e x \right)}}{e} + \int{\cos{\left(x_{1} \right)} d x} - \frac{{\color{red}{\int{x d x}}}}{2}=\frac{\cos{\left(e x \right)}}{e} + \int{\cos{\left(x_{1} \right)} d x} - \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{2}=\frac{\cos{\left(e x \right)}}{e} + \int{\cos{\left(x_{1} \right)} d x} - \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{2}$$
$$$c=\cos{\left(x_{1} \right)}$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$$- \frac{x^{2}}{4} + \frac{\cos{\left(e x \right)}}{e} + {\color{red}{\int{\cos{\left(x_{1} \right)} d x}}} = - \frac{x^{2}}{4} + \frac{\cos{\left(e x \right)}}{e} + {\color{red}{x \cos{\left(x_{1} \right)}}}$$
したがって、
$$\int{\left(- \frac{x}{2} - \sin{\left(e x \right)} + \cos{\left(x_{1} \right)}\right)d x} = - \frac{x^{2}}{4} + x \cos{\left(x_{1} \right)} + \frac{\cos{\left(e x \right)}}{e}$$
積分定数を加える:
$$\int{\left(- \frac{x}{2} - \sin{\left(e x \right)} + \cos{\left(x_{1} \right)}\right)d x} = - \frac{x^{2}}{4} + x \cos{\left(x_{1} \right)} + \frac{\cos{\left(e x \right)}}{e}+C$$
解答
$$$\int \left(- \frac{x}{2} - \sin{\left(e x \right)} + \cos{\left(x_{1} \right)}\right)\, dx = \left(- \frac{x^{2}}{4} + x \cos{\left(x_{1} \right)} + \frac{\cos{\left(e x \right)}}{e}\right) + C$$$A