Integral of $$$- \frac{x}{2} - \sin{\left(e x \right)} + \cos{\left(x_{1} \right)}$$$ with respect to $$$x$$$

The calculator will find the integral/antiderivative of $$$- \frac{x}{2} - \sin{\left(e x \right)} + \cos{\left(x_{1} \right)}$$$ with respect to $$$x$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(- \frac{x}{2} - \sin{\left(e x \right)} + \cos{\left(x_{1} \right)}\right)\, dx$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(- \frac{x}{2} - \sin{\left(e x \right)} + \cos{\left(x_{1} \right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{x}{2} d x} - \int{\sin{\left(e x \right)} d x} + \int{\cos{\left(x_{1} \right)} d x}\right)}}$$

Let $$$u=e x$$$.

Then $$$du=\left(e x\right)^{\prime }dx = e dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{e}$$$.

The integral becomes

$$- \int{\frac{x}{2} d x} + \int{\cos{\left(x_{1} \right)} d x} - {\color{red}{\int{\sin{\left(e x \right)} d x}}} = - \int{\frac{x}{2} d x} + \int{\cos{\left(x_{1} \right)} d x} - {\color{red}{\int{\frac{\sin{\left(u \right)}}{e} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=e^{-1}$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$- \int{\frac{x}{2} d x} + \int{\cos{\left(x_{1} \right)} d x} - {\color{red}{\int{\frac{\sin{\left(u \right)}}{e} d u}}} = - \int{\frac{x}{2} d x} + \int{\cos{\left(x_{1} \right)} d x} - {\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{e}}}$$

The integral of the sine is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$- \int{\frac{x}{2} d x} + \int{\cos{\left(x_{1} \right)} d x} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{e} = - \int{\frac{x}{2} d x} + \int{\cos{\left(x_{1} \right)} d x} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{e}$$

Recall that $$$u=e x$$$:

$$- \int{\frac{x}{2} d x} + \int{\cos{\left(x_{1} \right)} d x} + \frac{\cos{\left({\color{red}{u}} \right)}}{e} = - \int{\frac{x}{2} d x} + \int{\cos{\left(x_{1} \right)} d x} + \frac{\cos{\left({\color{red}{e x}} \right)}}{e}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = x$$$:

$$\frac{\cos{\left(e x \right)}}{e} + \int{\cos{\left(x_{1} \right)} d x} - {\color{red}{\int{\frac{x}{2} d x}}} = \frac{\cos{\left(e x \right)}}{e} + \int{\cos{\left(x_{1} \right)} d x} - {\color{red}{\left(\frac{\int{x d x}}{2}\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:

$$\frac{\cos{\left(e x \right)}}{e} + \int{\cos{\left(x_{1} \right)} d x} - \frac{{\color{red}{\int{x d x}}}}{2}=\frac{\cos{\left(e x \right)}}{e} + \int{\cos{\left(x_{1} \right)} d x} - \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{2}=\frac{\cos{\left(e x \right)}}{e} + \int{\cos{\left(x_{1} \right)} d x} - \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{2}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=\cos{\left(x_{1} \right)}$$$:

$$- \frac{x^{2}}{4} + \frac{\cos{\left(e x \right)}}{e} + {\color{red}{\int{\cos{\left(x_{1} \right)} d x}}} = - \frac{x^{2}}{4} + \frac{\cos{\left(e x \right)}}{e} + {\color{red}{x \cos{\left(x_{1} \right)}}}$$

Therefore,

$$\int{\left(- \frac{x}{2} - \sin{\left(e x \right)} + \cos{\left(x_{1} \right)}\right)d x} = - \frac{x^{2}}{4} + x \cos{\left(x_{1} \right)} + \frac{\cos{\left(e x \right)}}{e}$$

Add the constant of integration:

$$\int{\left(- \frac{x}{2} - \sin{\left(e x \right)} + \cos{\left(x_{1} \right)}\right)d x} = - \frac{x^{2}}{4} + x \cos{\left(x_{1} \right)} + \frac{\cos{\left(e x \right)}}{e}+C$$

Answer

$$$\int \left(- \frac{x}{2} - \sin{\left(e x \right)} + \cos{\left(x_{1} \right)}\right)\, dx = \left(- \frac{x^{2}}{4} + x \cos{\left(x_{1} \right)} + \frac{\cos{\left(e x \right)}}{e}\right) + C$$$A


Please try a new game Rotatly