$$$\frac{1}{t}$$$の積分
入力内容
$$$\int \frac{1}{t}\, dt$$$ を求めよ。
解答
$$$\frac{1}{t}$$$ の不定積分は $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$ です:
$${\color{red}{\int{\frac{1}{t} d t}}} = {\color{red}{\ln{\left(\left|{t}\right| \right)}}}$$
したがって、
$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$
積分定数を加える:
$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}+C$$
解答
$$$\int \frac{1}{t}\, dt = \ln\left(\left|{t}\right|\right) + C$$$A
Please try a new game Rotatly