Integral de $$$\frac{1}{t}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{1}{t}\, dt$$$.
Solución
La integral de $$$\frac{1}{t}$$$ es $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{t} d t}}} = {\color{red}{\ln{\left(\left|{t}\right| \right)}}}$$
Por lo tanto,
$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$
Añade la constante de integración:
$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}+C$$
Respuesta
$$$\int \frac{1}{t}\, dt = \ln\left(\left|{t}\right|\right) + C$$$A
Please try a new game Rotatly