$$$- 9 x e^{- 3 x}$$$の積分
入力内容
$$$\int \left(- 9 x e^{- 3 x}\right)\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=-9$$$ と $$$f{\left(x \right)} = x e^{- 3 x}$$$ に対して適用する:
$${\color{red}{\int{\left(- 9 x e^{- 3 x}\right)d x}}} = {\color{red}{\left(- 9 \int{x e^{- 3 x} d x}\right)}}$$
積分 $$$\int{x e^{- 3 x} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。
$$$\operatorname{u}=x$$$ と $$$\operatorname{dv}=e^{- 3 x} dx$$$ とする。
したがって、$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{e^{- 3 x} d x}=- \frac{e^{- 3 x}}{3}$$$(手順は»を参照)。
積分は次のようになります
$$- 9 {\color{red}{\int{x e^{- 3 x} d x}}}=- 9 {\color{red}{\left(x \cdot \left(- \frac{e^{- 3 x}}{3}\right)-\int{\left(- \frac{e^{- 3 x}}{3}\right) \cdot 1 d x}\right)}}=- 9 {\color{red}{\left(- \frac{x e^{- 3 x}}{3} - \int{\left(- \frac{e^{- 3 x}}{3}\right)d x}\right)}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=- \frac{1}{3}$$$ と $$$f{\left(x \right)} = e^{- 3 x}$$$ に対して適用する:
$$3 x e^{- 3 x} + 9 {\color{red}{\int{\left(- \frac{e^{- 3 x}}{3}\right)d x}}} = 3 x e^{- 3 x} + 9 {\color{red}{\left(- \frac{\int{e^{- 3 x} d x}}{3}\right)}}$$
$$$u=- 3 x$$$ とする。
すると $$$du=\left(- 3 x\right)^{\prime }dx = - 3 dx$$$(手順は»で確認できます)、$$$dx = - \frac{du}{3}$$$ となります。
この積分は次のように書き換えられる
$$3 x e^{- 3 x} - 3 {\color{red}{\int{e^{- 3 x} d x}}} = 3 x e^{- 3 x} - 3 {\color{red}{\int{\left(- \frac{e^{u}}{3}\right)d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=- \frac{1}{3}$$$ と $$$f{\left(u \right)} = e^{u}$$$ に対して適用する:
$$3 x e^{- 3 x} - 3 {\color{red}{\int{\left(- \frac{e^{u}}{3}\right)d u}}} = 3 x e^{- 3 x} - 3 {\color{red}{\left(- \frac{\int{e^{u} d u}}{3}\right)}}$$
指数関数の積分は $$$\int{e^{u} d u} = e^{u}$$$です:
$$3 x e^{- 3 x} + {\color{red}{\int{e^{u} d u}}} = 3 x e^{- 3 x} + {\color{red}{e^{u}}}$$
次のことを思い出してください $$$u=- 3 x$$$:
$$3 x e^{- 3 x} + e^{{\color{red}{u}}} = 3 x e^{- 3 x} + e^{{\color{red}{\left(- 3 x\right)}}}$$
したがって、
$$\int{\left(- 9 x e^{- 3 x}\right)d x} = 3 x e^{- 3 x} + e^{- 3 x}$$
簡単化せよ:
$$\int{\left(- 9 x e^{- 3 x}\right)d x} = \left(3 x + 1\right) e^{- 3 x}$$
積分定数を加える:
$$\int{\left(- 9 x e^{- 3 x}\right)d x} = \left(3 x + 1\right) e^{- 3 x}+C$$
解答
$$$\int \left(- 9 x e^{- 3 x}\right)\, dx = \left(3 x + 1\right) e^{- 3 x} + C$$$A