Ολοκλήρωμα του $$$- 9 x e^{- 3 x}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$- 9 x e^{- 3 x}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(- 9 x e^{- 3 x}\right)\, dx$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=-9$$$ και $$$f{\left(x \right)} = x e^{- 3 x}$$$:

$${\color{red}{\int{\left(- 9 x e^{- 3 x}\right)d x}}} = {\color{red}{\left(- 9 \int{x e^{- 3 x} d x}\right)}}$$

Για το ολοκλήρωμα $$$\int{x e^{- 3 x} d x}$$$, χρησιμοποιήστε την ολοκλήρωση κατά μέρη $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Έστω $$$\operatorname{u}=x$$$ και $$$\operatorname{dv}=e^{- 3 x} dx$$$.

Τότε $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (τα βήματα φαίνονται ») και $$$\operatorname{v}=\int{e^{- 3 x} d x}=- \frac{e^{- 3 x}}{3}$$$ (τα βήματα φαίνονται »).

Το ολοκλήρωμα γίνεται

$$- 9 {\color{red}{\int{x e^{- 3 x} d x}}}=- 9 {\color{red}{\left(x \cdot \left(- \frac{e^{- 3 x}}{3}\right)-\int{\left(- \frac{e^{- 3 x}}{3}\right) \cdot 1 d x}\right)}}=- 9 {\color{red}{\left(- \frac{x e^{- 3 x}}{3} - \int{\left(- \frac{e^{- 3 x}}{3}\right)d x}\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=- \frac{1}{3}$$$ και $$$f{\left(x \right)} = e^{- 3 x}$$$:

$$3 x e^{- 3 x} + 9 {\color{red}{\int{\left(- \frac{e^{- 3 x}}{3}\right)d x}}} = 3 x e^{- 3 x} + 9 {\color{red}{\left(- \frac{\int{e^{- 3 x} d x}}{3}\right)}}$$

Έστω $$$u=- 3 x$$$.

Τότε $$$du=\left(- 3 x\right)^{\prime }dx = - 3 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = - \frac{du}{3}$$$.

Επομένως,

$$3 x e^{- 3 x} - 3 {\color{red}{\int{e^{- 3 x} d x}}} = 3 x e^{- 3 x} - 3 {\color{red}{\int{\left(- \frac{e^{u}}{3}\right)d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=- \frac{1}{3}$$$ και $$$f{\left(u \right)} = e^{u}$$$:

$$3 x e^{- 3 x} - 3 {\color{red}{\int{\left(- \frac{e^{u}}{3}\right)d u}}} = 3 x e^{- 3 x} - 3 {\color{red}{\left(- \frac{\int{e^{u} d u}}{3}\right)}}$$

Το ολοκλήρωμα της εκθετικής συνάρτησης είναι $$$\int{e^{u} d u} = e^{u}$$$:

$$3 x e^{- 3 x} + {\color{red}{\int{e^{u} d u}}} = 3 x e^{- 3 x} + {\color{red}{e^{u}}}$$

Θυμηθείτε ότι $$$u=- 3 x$$$:

$$3 x e^{- 3 x} + e^{{\color{red}{u}}} = 3 x e^{- 3 x} + e^{{\color{red}{\left(- 3 x\right)}}}$$

Επομένως,

$$\int{\left(- 9 x e^{- 3 x}\right)d x} = 3 x e^{- 3 x} + e^{- 3 x}$$

Απλοποιήστε:

$$\int{\left(- 9 x e^{- 3 x}\right)d x} = \left(3 x + 1\right) e^{- 3 x}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(- 9 x e^{- 3 x}\right)d x} = \left(3 x + 1\right) e^{- 3 x}+C$$

Απάντηση

$$$\int \left(- 9 x e^{- 3 x}\right)\, dx = \left(3 x + 1\right) e^{- 3 x} + C$$$A


Please try a new game Rotatly