$$$\sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)}\, dx$$$ を求めよ。
解答
被積分関数を書き換える:
$${\color{red}{\int{\sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\sin^{3}{\left(x \right)}}{\cos^{3}{\left(x \right)}} d x}}}$$
正弦を1つ取り出し、残りは余弦で表し、$$$\alpha=x$$$ に対する公式 $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ を用いよ。:
$${\color{red}{\int{\frac{\sin^{3}{\left(x \right)}}{\cos^{3}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}}{\cos^{3}{\left(x \right)}} d x}}}$$
$$$u=\cos{\left(x \right)}$$$ とする。
すると $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$(手順は»で確認できます)、$$$\sin{\left(x \right)} dx = - du$$$ となります。
したがって、
$${\color{red}{\int{\frac{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}}{\cos^{3}{\left(x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1 - u^{2}}{u^{3}}\right)d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=-1$$$ と $$$f{\left(u \right)} = \frac{1 - u^{2}}{u^{3}}$$$ に対して適用する:
$${\color{red}{\int{\left(- \frac{1 - u^{2}}{u^{3}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1 - u^{2}}{u^{3}} d u}\right)}}$$
Expand the expression:
$$- {\color{red}{\int{\frac{1 - u^{2}}{u^{3}} d u}}} = - {\color{red}{\int{\left(- \frac{1}{u} + \frac{1}{u^{3}}\right)d u}}}$$
項別に積分せよ:
$$- {\color{red}{\int{\left(- \frac{1}{u} + \frac{1}{u^{3}}\right)d u}}} = - {\color{red}{\left(\int{\frac{1}{u^{3}} d u} - \int{\frac{1}{u} d u}\right)}}$$
$$$n=-3$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\int{\frac{1}{u} d u} - {\color{red}{\int{\frac{1}{u^{3}} d u}}}=\int{\frac{1}{u} d u} - {\color{red}{\int{u^{-3} d u}}}=\int{\frac{1}{u} d u} - {\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}=\int{\frac{1}{u} d u} - {\color{red}{\left(- \frac{u^{-2}}{2}\right)}}=\int{\frac{1}{u} d u} - {\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$
$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:
$${\color{red}{\int{\frac{1}{u} d u}}} + \frac{1}{2 u^{2}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}} + \frac{1}{2 u^{2}}$$
次のことを思い出してください $$$u=\cos{\left(x \right)}$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} + \frac{{\color{red}{u}}^{-2}}{2} = \ln{\left(\left|{{\color{red}{\cos{\left(x \right)}}}}\right| \right)} + \frac{{\color{red}{\cos{\left(x \right)}}}^{-2}}{2}$$
したがって、
$$\int{\sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)} d x} = \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)} + \frac{1}{2 \cos^{2}{\left(x \right)}}$$
積分定数を加える:
$$\int{\sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)} d x} = \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)} + \frac{1}{2 \cos^{2}{\left(x \right)}}+C$$
解答
$$$\int \sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)}\, dx = \left(\ln\left(\left|{\cos{\left(x \right)}}\right|\right) + \frac{1}{2 \cos^{2}{\left(x \right)}}\right) + C$$$A