Intégrale de $$$\sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)}\, dx$$$.
Solution
Réécrivez l'intégrande:
$${\color{red}{\int{\sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\sin^{3}{\left(x \right)}}{\cos^{3}{\left(x \right)}} d x}}}$$
Mettez un sinus en évidence et exprimez tout le reste en fonction du cosinus, en utilisant la formule $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ avec $$$\alpha=x$$$:
$${\color{red}{\int{\frac{\sin^{3}{\left(x \right)}}{\cos^{3}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}}{\cos^{3}{\left(x \right)}} d x}}}$$
Soit $$$u=\cos{\left(x \right)}$$$.
Alors $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\sin{\left(x \right)} dx = - du$$$.
Ainsi,
$${\color{red}{\int{\frac{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}}{\cos^{3}{\left(x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1 - u^{2}}{u^{3}}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = \frac{1 - u^{2}}{u^{3}}$$$ :
$${\color{red}{\int{\left(- \frac{1 - u^{2}}{u^{3}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1 - u^{2}}{u^{3}} d u}\right)}}$$
Expand the expression:
$$- {\color{red}{\int{\frac{1 - u^{2}}{u^{3}} d u}}} = - {\color{red}{\int{\left(- \frac{1}{u} + \frac{1}{u^{3}}\right)d u}}}$$
Intégrez terme à terme:
$$- {\color{red}{\int{\left(- \frac{1}{u} + \frac{1}{u^{3}}\right)d u}}} = - {\color{red}{\left(\int{\frac{1}{u^{3}} d u} - \int{\frac{1}{u} d u}\right)}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-3$$$ :
$$\int{\frac{1}{u} d u} - {\color{red}{\int{\frac{1}{u^{3}} d u}}}=\int{\frac{1}{u} d u} - {\color{red}{\int{u^{-3} d u}}}=\int{\frac{1}{u} d u} - {\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}=\int{\frac{1}{u} d u} - {\color{red}{\left(- \frac{u^{-2}}{2}\right)}}=\int{\frac{1}{u} d u} - {\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$${\color{red}{\int{\frac{1}{u} d u}}} + \frac{1}{2 u^{2}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}} + \frac{1}{2 u^{2}}$$
Rappelons que $$$u=\cos{\left(x \right)}$$$ :
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} + \frac{{\color{red}{u}}^{-2}}{2} = \ln{\left(\left|{{\color{red}{\cos{\left(x \right)}}}}\right| \right)} + \frac{{\color{red}{\cos{\left(x \right)}}}^{-2}}{2}$$
Par conséquent,
$$\int{\sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)} d x} = \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)} + \frac{1}{2 \cos^{2}{\left(x \right)}}$$
Ajouter la constante d'intégration :
$$\int{\sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)} d x} = \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)} + \frac{1}{2 \cos^{2}{\left(x \right)}}+C$$
Réponse
$$$\int \sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)}\, dx = \left(\ln\left(\left|{\cos{\left(x \right)}}\right|\right) + \frac{1}{2 \cos^{2}{\left(x \right)}}\right) + C$$$A