$$$\sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)}\, dx$$$.

Çözüm

Integrand fonksiyonunu yeniden yazın:

$${\color{red}{\int{\sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\sin^{3}{\left(x \right)}}{\cos^{3}{\left(x \right)}} d x}}}$$

Bir sinüs terimini ortak çarpan olarak dışarı alın ve geri kalan her şeyi kosinüs cinsinden yazın, $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ formülünü $$$\alpha=x$$$ ile kullanarak:

$${\color{red}{\int{\frac{\sin^{3}{\left(x \right)}}{\cos^{3}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}}{\cos^{3}{\left(x \right)}} d x}}}$$

$$$u=\cos{\left(x \right)}$$$ olsun.

Böylece $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (adımlar » görülebilir) ve $$$\sin{\left(x \right)} dx = - du$$$ elde ederiz.

İntegral şu şekilde yeniden yazılabilir:

$${\color{red}{\int{\frac{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}}{\cos^{3}{\left(x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1 - u^{2}}{u^{3}}\right)d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=-1$$$ ve $$$f{\left(u \right)} = \frac{1 - u^{2}}{u^{3}}$$$ ile uygula:

$${\color{red}{\int{\left(- \frac{1 - u^{2}}{u^{3}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1 - u^{2}}{u^{3}} d u}\right)}}$$

Expand the expression:

$$- {\color{red}{\int{\frac{1 - u^{2}}{u^{3}} d u}}} = - {\color{red}{\int{\left(- \frac{1}{u} + \frac{1}{u^{3}}\right)d u}}}$$

Her terimin integralini alın:

$$- {\color{red}{\int{\left(- \frac{1}{u} + \frac{1}{u^{3}}\right)d u}}} = - {\color{red}{\left(\int{\frac{1}{u^{3}} d u} - \int{\frac{1}{u} d u}\right)}}$$

Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=-3$$$ ile uygulayın:

$$\int{\frac{1}{u} d u} - {\color{red}{\int{\frac{1}{u^{3}} d u}}}=\int{\frac{1}{u} d u} - {\color{red}{\int{u^{-3} d u}}}=\int{\frac{1}{u} d u} - {\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}=\int{\frac{1}{u} d u} - {\color{red}{\left(- \frac{u^{-2}}{2}\right)}}=\int{\frac{1}{u} d u} - {\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$

$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$${\color{red}{\int{\frac{1}{u} d u}}} + \frac{1}{2 u^{2}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}} + \frac{1}{2 u^{2}}$$

Hatırlayın ki $$$u=\cos{\left(x \right)}$$$:

$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} + \frac{{\color{red}{u}}^{-2}}{2} = \ln{\left(\left|{{\color{red}{\cos{\left(x \right)}}}}\right| \right)} + \frac{{\color{red}{\cos{\left(x \right)}}}^{-2}}{2}$$

Dolayısıyla,

$$\int{\sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)} d x} = \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)} + \frac{1}{2 \cos^{2}{\left(x \right)}}$$

İntegrasyon sabitini ekleyin:

$$\int{\sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)} d x} = \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)} + \frac{1}{2 \cos^{2}{\left(x \right)}}+C$$

Cevap

$$$\int \sin^{2}{\left(x \right)} \tan{\left(x \right)} \sec^{2}{\left(x \right)}\, dx = \left(\ln\left(\left|{\cos{\left(x \right)}}\right|\right) + \frac{1}{2 \cos^{2}{\left(x \right)}}\right) + C$$$A


Please try a new game Rotatly