関数計算機
関数の性質を段階的に求める
この計算機は、1変数関数の定義域、値域、x切片、y切片、導関数、積分、漸近線、増加・減少の区間、臨界点(停留点)、極値(最小・最大、局所(相対)、絶対(大域))の点、凹凸の区間、変曲点、極限、テイラー多項式、およびグラフを求めようとします。区間の指定も可能です。偶奇性も判定します。
Your input: find the properties of $$$f=x^{4} - 6 x^{2}$$$
Parity
The function is even.
Domain
$$$\left(-\infty, \infty\right)$$$
x-intercepts
$$$\left(0,0\right)$$$
$$$\left(\sqrt{6},0\right)\approx \left(2.44948974278318,0\right)$$$
$$$\left(- \sqrt{6},0\right)\approx \left(-2.44948974278318,0\right)$$$
y-intercepts
$$$\left(0,0\right)$$$
Range
$$$\left[-9, \infty\right)$$$
Critical Points
$$$\left(x, f \left(x \right)\right)=\left(- \sqrt{3},-9\right)\approx \left(-1.73205080756888,-9\right)$$$
$$$\left(x, f \left(x \right)\right)=\left(0,0\right)$$$
$$$\left(x, f \left(x \right)\right)=\left(\sqrt{3},-9\right)\approx \left(1.73205080756888,-9\right)$$$
Intervals of Increase
$$$\left(- \sqrt{3}, 0\right) \cup \left(\sqrt{3}, \infty\right)\approx \left(-1.73205080756888, 0\right) \cup \left(1.73205080756888, \infty\right)$$$
Intervals of Decrease
$$$\left(-\infty, - \sqrt{3}\right) \cup \left(0, \sqrt{3}\right)\approx \left(-\infty, -1.73205080756888\right) \cup \left(0, 1.73205080756888\right)$$$
Local Minima
$$$\left(x, f \left(x \right)\right)=\left(- \sqrt{3},-9\right)\approx \left(-1.73205080756888,-9\right)$$$
$$$\left(x, f \left(x \right)\right)=\left(\sqrt{3},-9\right)\approx \left(1.73205080756888,-9\right)$$$
Local Maxima
$$$\left(x, f \left(x \right)\right)=\left(0,0\right)$$$
Global (Absolute) Minima and Maxima
For global minima and maxima, see extrema calculator.
Inflection Points
$$$\left(x, f \left(x \right)\right)=\left(-1,-5\right)$$$
$$$\left(x, f \left(x \right)\right)=\left(1,-5\right)$$$
Concave upward on
$$$\left(-\infty, -1\right) \cup \left(1, \infty\right)$$$
Concave downward on
$$$\left(-1, 1\right)$$$
Derivative
For derivative, see derivative calculator.
Integral
For integral, see integral calculator.
Asymptotes
For asymptotes, see asymptote calculator.
Limit
For limit, see limit calculator.
Taylor Polynomial
For Taylor polynomial, see taylor polynomial calculator.
Graph
For graph, see graphing calculator.