Integrale di $$$\frac{1}{x^{\frac{3}{2}}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{1}{x^{\frac{3}{2}}}\, dx$$$.
Soluzione
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=- \frac{3}{2}$$$:
$${\color{red}{\int{\frac{1}{x^{\frac{3}{2}}} d x}}}={\color{red}{\int{x^{- \frac{3}{2}} d x}}}={\color{red}{\frac{x^{- \frac{3}{2} + 1}}{- \frac{3}{2} + 1}}}={\color{red}{\left(- 2 x^{- \frac{1}{2}}\right)}}={\color{red}{\left(- \frac{2}{\sqrt{x}}\right)}}$$
Pertanto,
$$\int{\frac{1}{x^{\frac{3}{2}}} d x} = - \frac{2}{\sqrt{x}}$$
Aggiungi la costante di integrazione:
$$\int{\frac{1}{x^{\frac{3}{2}}} d x} = - \frac{2}{\sqrt{x}}+C$$
Risposta
$$$\int \frac{1}{x^{\frac{3}{2}}}\, dx = - \frac{2}{\sqrt{x}} + C$$$A