Integrale di $$$\frac{\pi t \cos{\left(n \right)}}{2}$$$ rispetto a $$$t$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{\pi t \cos{\left(n \right)}}{2}\, dt$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=\frac{\pi \cos{\left(n \right)}}{2}$$$ e $$$f{\left(t \right)} = t$$$:
$${\color{red}{\int{\frac{\pi t \cos{\left(n \right)}}{2} d t}}} = {\color{red}{\left(\frac{\pi \cos{\left(n \right)} \int{t d t}}{2}\right)}}$$
Applica la regola della potenza $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$\frac{\pi \cos{\left(n \right)} {\color{red}{\int{t d t}}}}{2}=\frac{\pi \cos{\left(n \right)} {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}}{2}=\frac{\pi \cos{\left(n \right)} {\color{red}{\left(\frac{t^{2}}{2}\right)}}}{2}$$
Pertanto,
$$\int{\frac{\pi t \cos{\left(n \right)}}{2} d t} = \frac{\pi t^{2} \cos{\left(n \right)}}{4}$$
Aggiungi la costante di integrazione:
$$\int{\frac{\pi t \cos{\left(n \right)}}{2} d t} = \frac{\pi t^{2} \cos{\left(n \right)}}{4}+C$$
Risposta
$$$\int \frac{\pi t \cos{\left(n \right)}}{2}\, dt = \frac{\pi t^{2} \cos{\left(n \right)}}{4} + C$$$A