Intégrale de $$$\frac{\pi t \cos{\left(n \right)}}{2}$$$ par rapport à $$$t$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{\pi t \cos{\left(n \right)}}{2}\, dt$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ avec $$$c=\frac{\pi \cos{\left(n \right)}}{2}$$$ et $$$f{\left(t \right)} = t$$$ :
$${\color{red}{\int{\frac{\pi t \cos{\left(n \right)}}{2} d t}}} = {\color{red}{\left(\frac{\pi \cos{\left(n \right)} \int{t d t}}{2}\right)}}$$
Appliquer la règle de puissance $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=1$$$ :
$$\frac{\pi \cos{\left(n \right)} {\color{red}{\int{t d t}}}}{2}=\frac{\pi \cos{\left(n \right)} {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}}{2}=\frac{\pi \cos{\left(n \right)} {\color{red}{\left(\frac{t^{2}}{2}\right)}}}{2}$$
Par conséquent,
$$\int{\frac{\pi t \cos{\left(n \right)}}{2} d t} = \frac{\pi t^{2} \cos{\left(n \right)}}{4}$$
Ajouter la constante d'intégration :
$$\int{\frac{\pi t \cos{\left(n \right)}}{2} d t} = \frac{\pi t^{2} \cos{\left(n \right)}}{4}+C$$
Réponse
$$$\int \frac{\pi t \cos{\left(n \right)}}{2}\, dt = \frac{\pi t^{2} \cos{\left(n \right)}}{4} + C$$$A