Integral dari $$$- v^{4} + v$$$

Kalkulator akan menemukan integral/antiturunan dari $$$- v^{4} + v$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(- v^{4} + v\right)\, dv$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(- v^{4} + v\right)d v}}} = {\color{red}{\left(\int{v d v} - \int{v^{4} d v}\right)}}$$

Terapkan aturan pangkat $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:

$$- \int{v^{4} d v} + {\color{red}{\int{v d v}}}=- \int{v^{4} d v} + {\color{red}{\frac{v^{1 + 1}}{1 + 1}}}=- \int{v^{4} d v} + {\color{red}{\left(\frac{v^{2}}{2}\right)}}$$

Terapkan aturan pangkat $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=4$$$:

$$\frac{v^{2}}{2} - {\color{red}{\int{v^{4} d v}}}=\frac{v^{2}}{2} - {\color{red}{\frac{v^{1 + 4}}{1 + 4}}}=\frac{v^{2}}{2} - {\color{red}{\left(\frac{v^{5}}{5}\right)}}$$

Oleh karena itu,

$$\int{\left(- v^{4} + v\right)d v} = - \frac{v^{5}}{5} + \frac{v^{2}}{2}$$

Tambahkan konstanta integrasi:

$$\int{\left(- v^{4} + v\right)d v} = - \frac{v^{5}}{5} + \frac{v^{2}}{2}+C$$

Jawaban

$$$\int \left(- v^{4} + v\right)\, dv = \left(- \frac{v^{5}}{5} + \frac{v^{2}}{2}\right) + C$$$A


Please try a new game Rotatly