Integral dari $$$3^{x^{2}}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$3^{x^{2}}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int 3^{x^{2}}\, dx$$$.

Solusi

Ubah basis:

$${\color{red}{\int{3^{x^{2}} d x}}} = {\color{red}{\int{e^{x^{2} \ln{\left(3 \right)}} d x}}}$$

Misalkan $$$u=x \sqrt{\ln{\left(3 \right)}}$$$.

Kemudian $$$du=\left(x \sqrt{\ln{\left(3 \right)}}\right)^{\prime }dx = \sqrt{\ln{\left(3 \right)}} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{\sqrt{\ln{\left(3 \right)}}}$$$.

Dengan demikian,

$${\color{red}{\int{e^{x^{2} \ln{\left(3 \right)}} d x}}} = {\color{red}{\int{\frac{e^{u^{2}}}{\sqrt{\ln{\left(3 \right)}}} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{\sqrt{\ln{\left(3 \right)}}}$$$ dan $$$f{\left(u \right)} = e^{u^{2}}$$$:

$${\color{red}{\int{\frac{e^{u^{2}}}{\sqrt{\ln{\left(3 \right)}}} d u}}} = {\color{red}{\frac{\int{e^{u^{2}} d u}}{\sqrt{\ln{\left(3 \right)}}}}}$$

Integral ini (Fungsi Galat Imajiner) tidak memiliki bentuk tertutup:

$$\frac{{\color{red}{\int{e^{u^{2}} d u}}}}{\sqrt{\ln{\left(3 \right)}}} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}}{\sqrt{\ln{\left(3 \right)}}}$$

Ingat bahwa $$$u=x \sqrt{\ln{\left(3 \right)}}$$$:

$$\frac{\sqrt{\pi} \operatorname{erfi}{\left({\color{red}{u}} \right)}}{2 \sqrt{\ln{\left(3 \right)}}} = \frac{\sqrt{\pi} \operatorname{erfi}{\left({\color{red}{x \sqrt{\ln{\left(3 \right)}}}} \right)}}{2 \sqrt{\ln{\left(3 \right)}}}$$

Oleh karena itu,

$$\int{3^{x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \sqrt{\ln{\left(3 \right)}} \right)}}{2 \sqrt{\ln{\left(3 \right)}}}$$

Tambahkan konstanta integrasi:

$$\int{3^{x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \sqrt{\ln{\left(3 \right)}} \right)}}{2 \sqrt{\ln{\left(3 \right)}}}+C$$

Jawaban

$$$\int 3^{x^{2}}\, dx = \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \sqrt{\ln\left(3\right)} \right)}}{2 \sqrt{\ln\left(3\right)}} + C$$$A


Please try a new game Rotatly