Integral of $$$3^{x^{2}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 3^{x^{2}}\, dx$$$.
Solution
Change the base:
$${\color{red}{\int{3^{x^{2}} d x}}} = {\color{red}{\int{e^{x^{2} \ln{\left(3 \right)}} d x}}}$$
Let $$$u=x \sqrt{\ln{\left(3 \right)}}$$$.
Then $$$du=\left(x \sqrt{\ln{\left(3 \right)}}\right)^{\prime }dx = \sqrt{\ln{\left(3 \right)}} dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{\sqrt{\ln{\left(3 \right)}}}$$$.
Thus,
$${\color{red}{\int{e^{x^{2} \ln{\left(3 \right)}} d x}}} = {\color{red}{\int{\frac{e^{u^{2}}}{\sqrt{\ln{\left(3 \right)}}} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{\sqrt{\ln{\left(3 \right)}}}$$$ and $$$f{\left(u \right)} = e^{u^{2}}$$$:
$${\color{red}{\int{\frac{e^{u^{2}}}{\sqrt{\ln{\left(3 \right)}}} d u}}} = {\color{red}{\frac{\int{e^{u^{2}} d u}}{\sqrt{\ln{\left(3 \right)}}}}}$$
This integral (Imaginary Error Function) does not have a closed form:
$$\frac{{\color{red}{\int{e^{u^{2}} d u}}}}{\sqrt{\ln{\left(3 \right)}}} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}}{\sqrt{\ln{\left(3 \right)}}}$$
Recall that $$$u=x \sqrt{\ln{\left(3 \right)}}$$$:
$$\frac{\sqrt{\pi} \operatorname{erfi}{\left({\color{red}{u}} \right)}}{2 \sqrt{\ln{\left(3 \right)}}} = \frac{\sqrt{\pi} \operatorname{erfi}{\left({\color{red}{x \sqrt{\ln{\left(3 \right)}}}} \right)}}{2 \sqrt{\ln{\left(3 \right)}}}$$
Therefore,
$$\int{3^{x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \sqrt{\ln{\left(3 \right)}} \right)}}{2 \sqrt{\ln{\left(3 \right)}}}$$
Add the constant of integration:
$$\int{3^{x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \sqrt{\ln{\left(3 \right)}} \right)}}{2 \sqrt{\ln{\left(3 \right)}}}+C$$
Answer
$$$\int 3^{x^{2}}\, dx = \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \sqrt{\ln\left(3\right)} \right)}}{2 \sqrt{\ln\left(3\right)}} + C$$$A