Integral dari $$$x^{4} \ln\left(2\right)$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int x^{4} \ln\left(2\right)\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\ln{\left(2 \right)}$$$ dan $$$f{\left(x \right)} = x^{4}$$$:
$${\color{red}{\int{x^{4} \ln{\left(2 \right)} d x}}} = {\color{red}{\ln{\left(2 \right)} \int{x^{4} d x}}}$$
Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=4$$$:
$$\ln{\left(2 \right)} {\color{red}{\int{x^{4} d x}}}=\ln{\left(2 \right)} {\color{red}{\frac{x^{1 + 4}}{1 + 4}}}=\ln{\left(2 \right)} {\color{red}{\left(\frac{x^{5}}{5}\right)}}$$
Oleh karena itu,
$$\int{x^{4} \ln{\left(2 \right)} d x} = \frac{x^{5} \ln{\left(2 \right)}}{5}$$
Tambahkan konstanta integrasi:
$$\int{x^{4} \ln{\left(2 \right)} d x} = \frac{x^{5} \ln{\left(2 \right)}}{5}+C$$
Jawaban
$$$\int x^{4} \ln\left(2\right)\, dx = \frac{x^{5} \ln\left(2\right)}{5} + C$$$A