Intégrale de $$$x - \frac{1}{\left(x - 1\right)^{2}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(x - \frac{1}{\left(x - 1\right)^{2}}\right)\, dx$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(x - \frac{1}{\left(x - 1\right)^{2}}\right)d x}}} = {\color{red}{\left(\int{x d x} - \int{\frac{1}{\left(x - 1\right)^{2}} d x}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=1$$$ :
$$- \int{\frac{1}{\left(x - 1\right)^{2}} d x} + {\color{red}{\int{x d x}}}=- \int{\frac{1}{\left(x - 1\right)^{2}} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \int{\frac{1}{\left(x - 1\right)^{2}} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Soit $$$u=x - 1$$$.
Alors $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
L’intégrale devient
$$\frac{x^{2}}{2} - {\color{red}{\int{\frac{1}{\left(x - 1\right)^{2}} d x}}} = \frac{x^{2}}{2} - {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-2$$$ :
$$\frac{x^{2}}{2} - {\color{red}{\int{\frac{1}{u^{2}} d u}}}=\frac{x^{2}}{2} - {\color{red}{\int{u^{-2} d u}}}=\frac{x^{2}}{2} - {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=\frac{x^{2}}{2} - {\color{red}{\left(- u^{-1}\right)}}=\frac{x^{2}}{2} - {\color{red}{\left(- \frac{1}{u}\right)}}$$
Rappelons que $$$u=x - 1$$$ :
$$\frac{x^{2}}{2} + {\color{red}{u}}^{-1} = \frac{x^{2}}{2} + {\color{red}{\left(x - 1\right)}}^{-1}$$
Par conséquent,
$$\int{\left(x - \frac{1}{\left(x - 1\right)^{2}}\right)d x} = \frac{x^{2}}{2} + \frac{1}{x - 1}$$
Simplifier:
$$\int{\left(x - \frac{1}{\left(x - 1\right)^{2}}\right)d x} = \frac{x^{2} \left(x - 1\right) + 2}{2 \left(x - 1\right)}$$
Ajouter la constante d'intégration :
$$\int{\left(x - \frac{1}{\left(x - 1\right)^{2}}\right)d x} = \frac{x^{2} \left(x - 1\right) + 2}{2 \left(x - 1\right)}+C$$
Réponse
$$$\int \left(x - \frac{1}{\left(x - 1\right)^{2}}\right)\, dx = \frac{x^{2} \left(x - 1\right) + 2}{2 \left(x - 1\right)} + C$$$A