$$$x - \frac{1}{\left(x - 1\right)^{2}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$x - \frac{1}{\left(x - 1\right)^{2}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(x - \frac{1}{\left(x - 1\right)^{2}}\right)\, dx$$$.

Çözüm

Her terimin integralini alın:

$${\color{red}{\int{\left(x - \frac{1}{\left(x - 1\right)^{2}}\right)d x}}} = {\color{red}{\left(\int{x d x} - \int{\frac{1}{\left(x - 1\right)^{2}} d x}\right)}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=1$$$ ile uygulayın:

$$- \int{\frac{1}{\left(x - 1\right)^{2}} d x} + {\color{red}{\int{x d x}}}=- \int{\frac{1}{\left(x - 1\right)^{2}} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \int{\frac{1}{\left(x - 1\right)^{2}} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

$$$u=x - 1$$$ olsun.

Böylece $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (adımlar » görülebilir) ve $$$dx = du$$$ elde ederiz.

O halde,

$$\frac{x^{2}}{2} - {\color{red}{\int{\frac{1}{\left(x - 1\right)^{2}} d x}}} = \frac{x^{2}}{2} - {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$

Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=-2$$$ ile uygulayın:

$$\frac{x^{2}}{2} - {\color{red}{\int{\frac{1}{u^{2}} d u}}}=\frac{x^{2}}{2} - {\color{red}{\int{u^{-2} d u}}}=\frac{x^{2}}{2} - {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=\frac{x^{2}}{2} - {\color{red}{\left(- u^{-1}\right)}}=\frac{x^{2}}{2} - {\color{red}{\left(- \frac{1}{u}\right)}}$$

Hatırlayın ki $$$u=x - 1$$$:

$$\frac{x^{2}}{2} + {\color{red}{u}}^{-1} = \frac{x^{2}}{2} + {\color{red}{\left(x - 1\right)}}^{-1}$$

Dolayısıyla,

$$\int{\left(x - \frac{1}{\left(x - 1\right)^{2}}\right)d x} = \frac{x^{2}}{2} + \frac{1}{x - 1}$$

Sadeleştirin:

$$\int{\left(x - \frac{1}{\left(x - 1\right)^{2}}\right)d x} = \frac{x^{2} \left(x - 1\right) + 2}{2 \left(x - 1\right)}$$

İntegrasyon sabitini ekleyin:

$$\int{\left(x - \frac{1}{\left(x - 1\right)^{2}}\right)d x} = \frac{x^{2} \left(x - 1\right) + 2}{2 \left(x - 1\right)}+C$$

Cevap

$$$\int \left(x - \frac{1}{\left(x - 1\right)^{2}}\right)\, dx = \frac{x^{2} \left(x - 1\right) + 2}{2 \left(x - 1\right)} + C$$$A


Please try a new game Rotatly