Intégrale de $$$i d n t \sin{\left(2 x \right)}$$$ par rapport à $$$x$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int i d n t \sin{\left(2 x \right)}\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=i d n t$$$ et $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$ :
$${\color{red}{\int{i d n t \sin{\left(2 x \right)} d x}}} = {\color{red}{i d n t \int{\sin{\left(2 x \right)} d x}}}$$
Soit $$$u=2 x$$$.
Alors $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{2}$$$.
Par conséquent,
$$i d n t {\color{red}{\int{\sin{\left(2 x \right)} d x}}} = i d n t {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ :
$$i d n t {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}} = i d n t {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$
L’intégrale du sinus est $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$ :
$$\frac{i d n t {\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = \frac{i d n t {\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$
Rappelons que $$$u=2 x$$$ :
$$- \frac{i d n t \cos{\left({\color{red}{u}} \right)}}{2} = - \frac{i d n t \cos{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$
Par conséquent,
$$\int{i d n t \sin{\left(2 x \right)} d x} = - \frac{i d n t \cos{\left(2 x \right)}}{2}$$
Ajouter la constante d'intégration :
$$\int{i d n t \sin{\left(2 x \right)} d x} = - \frac{i d n t \cos{\left(2 x \right)}}{2}+C$$
Réponse
$$$\int i d n t \sin{\left(2 x \right)}\, dx = - \frac{i d n t \cos{\left(2 x \right)}}{2} + C$$$A