Integral de $$$i d n t \sin{\left(2 x \right)}$$$ con respecto a $$$x$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int i d n t \sin{\left(2 x \right)}\, dx$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=i d n t$$$ y $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$:
$${\color{red}{\int{i d n t \sin{\left(2 x \right)} d x}}} = {\color{red}{i d n t \int{\sin{\left(2 x \right)} d x}}}$$
Sea $$$u=2 x$$$.
Entonces $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{2}$$$.
La integral puede reescribirse como
$$i d n t {\color{red}{\int{\sin{\left(2 x \right)} d x}}} = i d n t {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$i d n t {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}} = i d n t {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$
La integral del seno es $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{i d n t {\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = \frac{i d n t {\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$
Recordemos que $$$u=2 x$$$:
$$- \frac{i d n t \cos{\left({\color{red}{u}} \right)}}{2} = - \frac{i d n t \cos{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$
Por lo tanto,
$$\int{i d n t \sin{\left(2 x \right)} d x} = - \frac{i d n t \cos{\left(2 x \right)}}{2}$$
Añade la constante de integración:
$$\int{i d n t \sin{\left(2 x \right)} d x} = - \frac{i d n t \cos{\left(2 x \right)}}{2}+C$$
Respuesta
$$$\int i d n t \sin{\left(2 x \right)}\, dx = - \frac{i d n t \cos{\left(2 x \right)}}{2} + C$$$A