Intégrale de $$$- \frac{1}{x^{\frac{2}{3}}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(- \frac{1}{x^{\frac{2}{3}}}\right)\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=-1$$$ et $$$f{\left(x \right)} = \frac{1}{x^{\frac{2}{3}}}$$$ :
$${\color{red}{\int{\left(- \frac{1}{x^{\frac{2}{3}}}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x^{\frac{2}{3}}} d x}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=- \frac{2}{3}$$$ :
$$- {\color{red}{\int{\frac{1}{x^{\frac{2}{3}}} d x}}}=- {\color{red}{\int{x^{- \frac{2}{3}} d x}}}=- {\color{red}{\frac{x^{- \frac{2}{3} + 1}}{- \frac{2}{3} + 1}}}=- {\color{red}{\left(3 x^{\frac{1}{3}}\right)}}=- {\color{red}{\left(3 \sqrt[3]{x}\right)}}$$
Par conséquent,
$$\int{\left(- \frac{1}{x^{\frac{2}{3}}}\right)d x} = - 3 \sqrt[3]{x}$$
Ajouter la constante d'intégration :
$$\int{\left(- \frac{1}{x^{\frac{2}{3}}}\right)d x} = - 3 \sqrt[3]{x}+C$$
Réponse
$$$\int \left(- \frac{1}{x^{\frac{2}{3}}}\right)\, dx = - 3 \sqrt[3]{x} + C$$$A