Intégrale de $$$x^{2} - x - \frac{2}{x - 2}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(x^{2} - x - \frac{2}{x - 2}\right)\, dx$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(x^{2} - x - \frac{2}{x - 2}\right)d x}}} = {\color{red}{\left(- \int{x d x} + \int{x^{2} d x} - \int{\frac{2}{x - 2} d x}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=2$$$ :
$$- \int{x d x} - \int{\frac{2}{x - 2} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{x d x} - \int{\frac{2}{x - 2} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{x d x} - \int{\frac{2}{x - 2} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=1$$$ :
$$\frac{x^{3}}{3} - \int{\frac{2}{x - 2} d x} - {\color{red}{\int{x d x}}}=\frac{x^{3}}{3} - \int{\frac{2}{x - 2} d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{x^{3}}{3} - \int{\frac{2}{x - 2} d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=2$$$ et $$$f{\left(x \right)} = \frac{1}{x - 2}$$$ :
$$\frac{x^{3}}{3} - \frac{x^{2}}{2} - {\color{red}{\int{\frac{2}{x - 2} d x}}} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - {\color{red}{\left(2 \int{\frac{1}{x - 2} d x}\right)}}$$
Soit $$$u=x - 2$$$.
Alors $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
Par conséquent,
$$\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 {\color{red}{\int{\frac{1}{x - 2} d x}}} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 {\color{red}{\int{\frac{1}{u} d u}}}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 {\color{red}{\int{\frac{1}{u} d u}}} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Rappelons que $$$u=x - 2$$$ :
$$\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}$$
Par conséquent,
$$\int{\left(x^{2} - x - \frac{2}{x - 2}\right)d x} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 \ln{\left(\left|{x - 2}\right| \right)}$$
Ajouter la constante d'intégration :
$$\int{\left(x^{2} - x - \frac{2}{x - 2}\right)d x} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 \ln{\left(\left|{x - 2}\right| \right)}+C$$
Réponse
$$$\int \left(x^{2} - x - \frac{2}{x - 2}\right)\, dx = \left(\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 \ln\left(\left|{x - 2}\right|\right)\right) + C$$$A