Ολοκλήρωμα του $$$x^{2} - x - \frac{2}{x - 2}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$x^{2} - x - \frac{2}{x - 2}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(x^{2} - x - \frac{2}{x - 2}\right)\, dx$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(x^{2} - x - \frac{2}{x - 2}\right)d x}}} = {\color{red}{\left(- \int{x d x} + \int{x^{2} d x} - \int{\frac{2}{x - 2} d x}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:

$$- \int{x d x} - \int{\frac{2}{x - 2} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{x d x} - \int{\frac{2}{x - 2} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{x d x} - \int{\frac{2}{x - 2} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=1$$$:

$$\frac{x^{3}}{3} - \int{\frac{2}{x - 2} d x} - {\color{red}{\int{x d x}}}=\frac{x^{3}}{3} - \int{\frac{2}{x - 2} d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{x^{3}}{3} - \int{\frac{2}{x - 2} d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=2$$$ και $$$f{\left(x \right)} = \frac{1}{x - 2}$$$:

$$\frac{x^{3}}{3} - \frac{x^{2}}{2} - {\color{red}{\int{\frac{2}{x - 2} d x}}} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - {\color{red}{\left(2 \int{\frac{1}{x - 2} d x}\right)}}$$

Έστω $$$u=x - 2$$$.

Τότε $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.

Το ολοκλήρωμα γίνεται

$$\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 {\color{red}{\int{\frac{1}{x - 2} d x}}} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 {\color{red}{\int{\frac{1}{u} d u}}}$$

Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 {\color{red}{\int{\frac{1}{u} d u}}} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Θυμηθείτε ότι $$$u=x - 2$$$:

$$\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}$$

Επομένως,

$$\int{\left(x^{2} - x - \frac{2}{x - 2}\right)d x} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 \ln{\left(\left|{x - 2}\right| \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(x^{2} - x - \frac{2}{x - 2}\right)d x} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 \ln{\left(\left|{x - 2}\right| \right)}+C$$

Απάντηση

$$$\int \left(x^{2} - x - \frac{2}{x - 2}\right)\, dx = \left(\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 \ln\left(\left|{x - 2}\right|\right)\right) + C$$$A


Please try a new game Rotatly