$$$x^{2} - x - \frac{2}{x - 2}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \left(x^{2} - x - \frac{2}{x - 2}\right)\, dx$$$.
Çözüm
Her terimin integralini alın:
$${\color{red}{\int{\left(x^{2} - x - \frac{2}{x - 2}\right)d x}}} = {\color{red}{\left(- \int{x d x} + \int{x^{2} d x} - \int{\frac{2}{x - 2} d x}\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:
$$- \int{x d x} - \int{\frac{2}{x - 2} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{x d x} - \int{\frac{2}{x - 2} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{x d x} - \int{\frac{2}{x - 2} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=1$$$ ile uygulayın:
$$\frac{x^{3}}{3} - \int{\frac{2}{x - 2} d x} - {\color{red}{\int{x d x}}}=\frac{x^{3}}{3} - \int{\frac{2}{x - 2} d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{x^{3}}{3} - \int{\frac{2}{x - 2} d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=2$$$ ve $$$f{\left(x \right)} = \frac{1}{x - 2}$$$ ile uygula:
$$\frac{x^{3}}{3} - \frac{x^{2}}{2} - {\color{red}{\int{\frac{2}{x - 2} d x}}} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - {\color{red}{\left(2 \int{\frac{1}{x - 2} d x}\right)}}$$
$$$u=x - 2$$$ olsun.
Böylece $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (adımlar » görülebilir) ve $$$dx = du$$$ elde ederiz.
O halde,
$$\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 {\color{red}{\int{\frac{1}{x - 2} d x}}} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 {\color{red}{\int{\frac{1}{u} d u}}} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Hatırlayın ki $$$u=x - 2$$$:
$$\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}$$
Dolayısıyla,
$$\int{\left(x^{2} - x - \frac{2}{x - 2}\right)d x} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 \ln{\left(\left|{x - 2}\right| \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\left(x^{2} - x - \frac{2}{x - 2}\right)d x} = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 \ln{\left(\left|{x - 2}\right| \right)}+C$$
Cevap
$$$\int \left(x^{2} - x - \frac{2}{x - 2}\right)\, dx = \left(\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2 \ln\left(\left|{x - 2}\right|\right)\right) + C$$$A