Intégrale de $$$- a^{2} x^{2} + 1$$$ par rapport à $$$x$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(- a^{2} x^{2} + 1\right)\, dx$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(- a^{2} x^{2} + 1\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{a^{2} x^{2} d x}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dx = c x$$$ avec $$$c=1$$$:
$$- \int{a^{2} x^{2} d x} + {\color{red}{\int{1 d x}}} = - \int{a^{2} x^{2} d x} + {\color{red}{x}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=a^{2}$$$ et $$$f{\left(x \right)} = x^{2}$$$ :
$$x - {\color{red}{\int{a^{2} x^{2} d x}}} = x - {\color{red}{a^{2} \int{x^{2} d x}}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=2$$$ :
$$- a^{2} {\color{red}{\int{x^{2} d x}}} + x=- a^{2} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}} + x=- a^{2} {\color{red}{\left(\frac{x^{3}}{3}\right)}} + x$$
Par conséquent,
$$\int{\left(- a^{2} x^{2} + 1\right)d x} = - \frac{a^{2} x^{3}}{3} + x$$
Ajouter la constante d'intégration :
$$\int{\left(- a^{2} x^{2} + 1\right)d x} = - \frac{a^{2} x^{3}}{3} + x+C$$
Réponse
$$$\int \left(- a^{2} x^{2} + 1\right)\, dx = \left(- \frac{a^{2} x^{3}}{3} + x\right) + C$$$A