$$$\left[\begin{array}{cc}1 - \lambda & \frac{1}{5}\\\frac{1}{5} & 1 - \lambda\end{array}\right]$$$:n determinantti
Aiheeseen liittyvä laskin: Kofaktorimatriisilaskin
Syötteesi
Laske $$$\left|\begin{array}{cc}1 - \lambda & \frac{1}{5}\\\frac{1}{5} & 1 - \lambda\end{array}\right|$$$.
Ratkaisu
2x2-matriisin determinantti on $$$\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c$$$.
$$$\left|\begin{array}{cc}1 - \lambda & \frac{1}{5}\\\frac{1}{5} & 1 - \lambda\end{array}\right| = \left(1 - \lambda\right)\cdot \left(1 - \lambda\right) - \left(\frac{1}{5}\right)\cdot \left(\frac{1}{5}\right) = \lambda^{2} - 2 \lambda + \frac{24}{25}$$$
Vastaus
$$$\left|\begin{array}{cc}1 - \lambda & \frac{1}{5}\\\frac{1}{5} & 1 - \lambda\end{array}\right| = \lambda^{2} - 2 \lambda + \frac{24}{25} = \lambda^{2} - 2 \lambda + 0.96$$$A