Funktion $$$x e^{x^{2}}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int x e^{x^{2}}\, dx$$$.
Ratkaisu
Olkoon $$$u=x^{2}$$$.
Tällöin $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$x dx = \frac{du}{2}$$$.
Integraali muuttuu muotoon
$${\color{red}{\int{x e^{x^{2}} d x}}} = {\color{red}{\int{\frac{e^{u}}{2} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\frac{e^{u}}{2} d u}}} = {\color{red}{\left(\frac{\int{e^{u} d u}}{2}\right)}}$$
Eksponenttifunktion integraali on $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{{\color{red}{\int{e^{u} d u}}}}{2} = \frac{{\color{red}{e^{u}}}}{2}$$
Muista, että $$$u=x^{2}$$$:
$$\frac{e^{{\color{red}{u}}}}{2} = \frac{e^{{\color{red}{x^{2}}}}}{2}$$
Näin ollen,
$$\int{x e^{x^{2}} d x} = \frac{e^{x^{2}}}{2}$$
Lisää integrointivakio:
$$\int{x e^{x^{2}} d x} = \frac{e^{x^{2}}}{2}+C$$
Vastaus
$$$\int x e^{x^{2}}\, dx = \frac{e^{x^{2}}}{2} + C$$$A