$$$x e^{x^{2}}$$$ 的积分
您的输入
求$$$\int x e^{x^{2}}\, dx$$$。
解答
设$$$u=x^{2}$$$。
则$$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (步骤见»),并有$$$x dx = \frac{du}{2}$$$。
该积分可以改写为
$${\color{red}{\int{x e^{x^{2}} d x}}} = {\color{red}{\int{\frac{e^{u}}{2} d u}}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(u \right)} = e^{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{e^{u}}{2} d u}}} = {\color{red}{\left(\frac{\int{e^{u} d u}}{2}\right)}}$$
指数函数的积分为 $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{{\color{red}{\int{e^{u} d u}}}}{2} = \frac{{\color{red}{e^{u}}}}{2}$$
回忆一下 $$$u=x^{2}$$$:
$$\frac{e^{{\color{red}{u}}}}{2} = \frac{e^{{\color{red}{x^{2}}}}}{2}$$
因此,
$$\int{x e^{x^{2}} d x} = \frac{e^{x^{2}}}{2}$$
加上积分常数:
$$\int{x e^{x^{2}} d x} = \frac{e^{x^{2}}}{2}+C$$
答案
$$$\int x e^{x^{2}}\, dx = \frac{e^{x^{2}}}{2} + C$$$A