Funktion $$$x^{88}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int x^{88}\, dx$$$.
Ratkaisu
Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=88$$$:
$${\color{red}{\int{x^{88} d x}}}={\color{red}{\frac{x^{1 + 88}}{1 + 88}}}={\color{red}{\left(\frac{x^{89}}{89}\right)}}$$
Näin ollen,
$$\int{x^{88} d x} = \frac{x^{89}}{89}$$
Lisää integrointivakio:
$$\int{x^{88} d x} = \frac{x^{89}}{89}+C$$
Vastaus
$$$\int x^{88}\, dx = \frac{x^{89}}{89} + C$$$A
Please try a new game Rotatly