Integraali $$$n \tan{\left(x \right)}$$$:stä muuttujan $$$x$$$ suhteen
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int n \tan{\left(x \right)}\, dx$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=n$$$ ja $$$f{\left(x \right)} = \tan{\left(x \right)}$$$:
$${\color{red}{\int{n \tan{\left(x \right)} d x}}} = {\color{red}{n \int{\tan{\left(x \right)} d x}}}$$
Kirjoita tangentti uudelleen muotoon $$$\tan\left(x\right)=\frac{\sin\left(x\right)}{\cos\left(x\right)}$$$:
$$n {\color{red}{\int{\tan{\left(x \right)} d x}}} = n {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}}$$
Olkoon $$$u=\cos{\left(x \right)}$$$.
Tällöin $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\sin{\left(x \right)} dx = - du$$$.
Integraali muuttuu muotoon
$$n {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = n {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$n {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = n {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$
Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- n {\color{red}{\int{\frac{1}{u} d u}}} = - n {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Muista, että $$$u=\cos{\left(x \right)}$$$:
$$- n \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - n \ln{\left(\left|{{\color{red}{\cos{\left(x \right)}}}}\right| \right)}$$
Näin ollen,
$$\int{n \tan{\left(x \right)} d x} = - n \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}$$
Lisää integrointivakio:
$$\int{n \tan{\left(x \right)} d x} = - n \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}+C$$
Vastaus
$$$\int n \tan{\left(x \right)}\, dx = - n \ln\left(\left|{\cos{\left(x \right)}}\right|\right) + C$$$A