Integrale di $$$n \tan{\left(x \right)}$$$ rispetto a $$$x$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int n \tan{\left(x \right)}\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=n$$$ e $$$f{\left(x \right)} = \tan{\left(x \right)}$$$:
$${\color{red}{\int{n \tan{\left(x \right)} d x}}} = {\color{red}{n \int{\tan{\left(x \right)} d x}}}$$
Riescrivi la tangente come $$$\tan\left(x\right)=\frac{\sin\left(x\right)}{\cos\left(x\right)}$$$:
$$n {\color{red}{\int{\tan{\left(x \right)} d x}}} = n {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}}$$
Sia $$$u=\cos{\left(x \right)}$$$.
Quindi $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (i passaggi si possono vedere »), e si ha che $$$\sin{\left(x \right)} dx = - du$$$.
Quindi,
$$n {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = n {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=-1$$$ e $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$n {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = n {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$
L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- n {\color{red}{\int{\frac{1}{u} d u}}} = - n {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Ricordiamo che $$$u=\cos{\left(x \right)}$$$:
$$- n \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - n \ln{\left(\left|{{\color{red}{\cos{\left(x \right)}}}}\right| \right)}$$
Pertanto,
$$\int{n \tan{\left(x \right)} d x} = - n \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}$$
Aggiungi la costante di integrazione:
$$\int{n \tan{\left(x \right)} d x} = - n \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}+C$$
Risposta
$$$\int n \tan{\left(x \right)}\, dx = - n \ln\left(\left|{\cos{\left(x \right)}}\right|\right) + C$$$A