Funktion $$$e^{2 t}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int e^{2 t}\, dt$$$.
Ratkaisu
Olkoon $$$u=2 t$$$.
Tällöin $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dt = \frac{du}{2}$$$.
Siis,
$${\color{red}{\int{e^{2 t} d t}}} = {\color{red}{\int{\frac{e^{u}}{2} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\frac{e^{u}}{2} d u}}} = {\color{red}{\left(\frac{\int{e^{u} d u}}{2}\right)}}$$
Eksponenttifunktion integraali on $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{{\color{red}{\int{e^{u} d u}}}}{2} = \frac{{\color{red}{e^{u}}}}{2}$$
Muista, että $$$u=2 t$$$:
$$\frac{e^{{\color{red}{u}}}}{2} = \frac{e^{{\color{red}{\left(2 t\right)}}}}{2}$$
Näin ollen,
$$\int{e^{2 t} d t} = \frac{e^{2 t}}{2}$$
Lisää integrointivakio:
$$\int{e^{2 t} d t} = \frac{e^{2 t}}{2}+C$$
Vastaus
$$$\int e^{2 t}\, dt = \frac{e^{2 t}}{2} + C$$$A