Integral dari $$$e^{2 t}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$e^{2 t}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int e^{2 t}\, dt$$$.

Solusi

Misalkan $$$u=2 t$$$.

Kemudian $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dt = \frac{du}{2}$$$.

Integralnya menjadi

$${\color{red}{\int{e^{2 t} d t}}} = {\color{red}{\int{\frac{e^{u}}{2} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(u \right)} = e^{u}$$$:

$${\color{red}{\int{\frac{e^{u}}{2} d u}}} = {\color{red}{\left(\frac{\int{e^{u} d u}}{2}\right)}}$$

Integral dari fungsi eksponensial adalah $$$\int{e^{u} d u} = e^{u}$$$:

$$\frac{{\color{red}{\int{e^{u} d u}}}}{2} = \frac{{\color{red}{e^{u}}}}{2}$$

Ingat bahwa $$$u=2 t$$$:

$$\frac{e^{{\color{red}{u}}}}{2} = \frac{e^{{\color{red}{\left(2 t\right)}}}}{2}$$

Oleh karena itu,

$$\int{e^{2 t} d t} = \frac{e^{2 t}}{2}$$

Tambahkan konstanta integrasi:

$$\int{e^{2 t} d t} = \frac{e^{2 t}}{2}+C$$

Jawaban

$$$\int e^{2 t}\, dt = \frac{e^{2 t}}{2} + C$$$A


Please try a new game Rotatly