Funktion $$$\frac{\cos^{4}{\left(x \right)}}{\sin^{4}{\left(x \right)}}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{\cos^{4}{\left(x \right)}}{\sin^{4}{\left(x \right)}}\, dx$$$.
Ratkaisu
Kirjoita uudelleen kotangentin avulla:
$${\color{red}{\int{\frac{\cos^{4}{\left(x \right)}}{\sin^{4}{\left(x \right)}} d x}}} = {\color{red}{\int{\cot^{4}{\left(x \right)} d x}}}$$
Olkoon $$$u=\cot{\left(x \right)}$$$.
Tällöin $$$du=\left(\cot{\left(x \right)}\right)^{\prime }dx = - \csc^{2}{\left(x \right)} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\csc^{2}{\left(x \right)} dx = - du$$$.
Näin ollen,
$${\color{red}{\int{\cot^{4}{\left(x \right)} d x}}} = {\color{red}{\int{\left(- \frac{u^{4}}{u^{2} + 1}\right)d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(u \right)} = \frac{u^{4}}{u^{2} + 1}$$$:
$${\color{red}{\int{\left(- \frac{u^{4}}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(- \int{\frac{u^{4}}{u^{2} + 1} d u}\right)}}$$
Koska osoittajan aste ei ole pienempi kuin nimittäjän aste, suorita polynomien jakokulma (vaiheet voidaan nähdä »):
$$- {\color{red}{\int{\frac{u^{4}}{u^{2} + 1} d u}}} = - {\color{red}{\int{\left(u^{2} - 1 + \frac{1}{u^{2} + 1}\right)d u}}}$$
Integroi termi kerrallaan:
$$- {\color{red}{\int{\left(u^{2} - 1 + \frac{1}{u^{2} + 1}\right)d u}}} = - {\color{red}{\left(- \int{1 d u} + \int{u^{2} d u} + \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
Sovella vakiosääntöä $$$\int c\, du = c u$$$ käyttäen $$$c=1$$$:
$$- \int{u^{2} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{1 d u}}} = - \int{u^{2} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{u}}$$
Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=2$$$:
$$u - \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{u^{2} d u}}}=u - \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=u - \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Funktion $$$\frac{1}{u^{2} + 1}$$$ integraali on $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$- \frac{u^{3}}{3} + u - {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = - \frac{u^{3}}{3} + u - {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
Muista, että $$$u=\cot{\left(x \right)}$$$:
$$- \operatorname{atan}{\left({\color{red}{u}} \right)} + {\color{red}{u}} - \frac{{\color{red}{u}}^{3}}{3} = - \operatorname{atan}{\left({\color{red}{\cot{\left(x \right)}}} \right)} + {\color{red}{\cot{\left(x \right)}}} - \frac{{\color{red}{\cot{\left(x \right)}}}^{3}}{3}$$
Näin ollen,
$$\int{\frac{\cos^{4}{\left(x \right)}}{\sin^{4}{\left(x \right)}} d x} = - \frac{\cot^{3}{\left(x \right)}}{3} + \cot{\left(x \right)} - \operatorname{atan}{\left(\cot{\left(x \right)} \right)}$$
Lisää integrointivakio:
$$\int{\frac{\cos^{4}{\left(x \right)}}{\sin^{4}{\left(x \right)}} d x} = - \frac{\cot^{3}{\left(x \right)}}{3} + \cot{\left(x \right)} - \operatorname{atan}{\left(\cot{\left(x \right)} \right)}+C$$
Vastaus
$$$\int \frac{\cos^{4}{\left(x \right)}}{\sin^{4}{\left(x \right)}}\, dx = \left(- \frac{\cot^{3}{\left(x \right)}}{3} + \cot{\left(x \right)} - \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) + C$$$A