Funktion $$$\frac{1}{\left(x^{2} - 20 x\right)^{2}}$$$ integraali

Laskin löytää funktion $$$\frac{1}{\left(x^{2} - 20 x\right)^{2}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{1}{\left(x^{2} - 20 x\right)^{2}}\, dx$$$.

Ratkaisu

Suorita osamurtokehittely (vaiheet voidaan nähdä kohdassa »):

$${\color{red}{\int{\frac{1}{\left(x^{2} - 20 x\right)^{2}} d x}}} = {\color{red}{\int{\left(- \frac{1}{4000 \left(x - 20\right)} + \frac{1}{400 \left(x - 20\right)^{2}} + \frac{1}{4000 x} + \frac{1}{400 x^{2}}\right)d x}}}$$

Integroi termi kerrallaan:

$${\color{red}{\int{\left(- \frac{1}{4000 \left(x - 20\right)} + \frac{1}{400 \left(x - 20\right)^{2}} + \frac{1}{4000 x} + \frac{1}{400 x^{2}}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} - \int{\frac{1}{4000 \left(x - 20\right)} d x}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{4000}$$$ ja $$$f{\left(x \right)} = \frac{1}{x - 20}$$$:

$$\int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} - {\color{red}{\int{\frac{1}{4000 \left(x - 20\right)} d x}}} = \int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} - {\color{red}{\left(\frac{\int{\frac{1}{x - 20} d x}}{4000}\right)}}$$

Olkoon $$$u=x - 20$$$.

Tällöin $$$du=\left(x - 20\right)^{\prime }dx = 1 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = du$$$.

Näin ollen,

$$\int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} - \frac{{\color{red}{\int{\frac{1}{x - 20} d x}}}}{4000} = \int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{4000}$$

Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{4000} = \int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4000}$$

Muista, että $$$u=x - 20$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4000} + \int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} = - \frac{\ln{\left(\left|{{\color{red}{\left(x - 20\right)}}}\right| \right)}}{4000} + \int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{400}$$$ ja $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$:

$$- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} + {\color{red}{\int{\frac{1}{400 x^{2}} d x}}} = - \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} + {\color{red}{\left(\frac{\int{\frac{1}{x^{2}} d x}}{400}\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=-2$$$:

$$- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} + \frac{{\color{red}{\int{\frac{1}{x^{2}} d x}}}}{400}=- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} + \frac{{\color{red}{\int{x^{-2} d x}}}}{400}=- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} + \frac{{\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}}{400}=- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} + \frac{{\color{red}{\left(- x^{-1}\right)}}}{400}=- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} + \frac{{\color{red}{\left(- \frac{1}{x}\right)}}}{400}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{400}$$$ ja $$$f{\left(x \right)} = \frac{1}{\left(x - 20\right)^{2}}$$$:

$$- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + {\color{red}{\int{\frac{1}{400 \left(x - 20\right)^{2}} d x}}} - \frac{1}{400 x} = - \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + {\color{red}{\left(\frac{\int{\frac{1}{\left(x - 20\right)^{2}} d x}}{400}\right)}} - \frac{1}{400 x}$$

Olkoon $$$u=x - 20$$$.

Tällöin $$$du=\left(x - 20\right)^{\prime }dx = 1 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = du$$$.

Näin ollen,

$$- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \frac{{\color{red}{\int{\frac{1}{\left(x - 20\right)^{2}} d x}}}}{400} - \frac{1}{400 x} = - \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \frac{{\color{red}{\int{\frac{1}{u^{2}} d u}}}}{400} - \frac{1}{400 x}$$

Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=-2$$$:

$$- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \frac{{\color{red}{\int{\frac{1}{u^{2}} d u}}}}{400} - \frac{1}{400 x}=- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \frac{{\color{red}{\int{u^{-2} d u}}}}{400} - \frac{1}{400 x}=- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \frac{{\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}}{400} - \frac{1}{400 x}=- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \frac{{\color{red}{\left(- u^{-1}\right)}}}{400} - \frac{1}{400 x}=- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \frac{{\color{red}{\left(- \frac{1}{u}\right)}}}{400} - \frac{1}{400 x}$$

Muista, että $$$u=x - 20$$$:

$$- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} - \frac{{\color{red}{u}}^{-1}}{400} - \frac{1}{400 x} = - \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} - \frac{{\color{red}{\left(x - 20\right)}}^{-1}}{400} - \frac{1}{400 x}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{4000}$$$ ja $$$f{\left(x \right)} = \frac{1}{x}$$$:

$$- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + {\color{red}{\int{\frac{1}{4000 x} d x}}} - \frac{1}{400 \left(x - 20\right)} - \frac{1}{400 x} = - \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + {\color{red}{\left(\frac{\int{\frac{1}{x} d x}}{4000}\right)}} - \frac{1}{400 \left(x - 20\right)} - \frac{1}{400 x}$$

Funktion $$$\frac{1}{x}$$$ integraali on $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \frac{{\color{red}{\int{\frac{1}{x} d x}}}}{4000} - \frac{1}{400 \left(x - 20\right)} - \frac{1}{400 x} = - \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \frac{{\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{4000} - \frac{1}{400 \left(x - 20\right)} - \frac{1}{400 x}$$

Näin ollen,

$$\int{\frac{1}{\left(x^{2} - 20 x\right)^{2}} d x} = \frac{\ln{\left(\left|{x}\right| \right)}}{4000} - \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} - \frac{1}{400 \left(x - 20\right)} - \frac{1}{400 x}$$

Sievennä:

$$\int{\frac{1}{\left(x^{2} - 20 x\right)^{2}} d x} = \frac{x \left(x - 20\right) \left(\ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{x - 20}\right| \right)}\right) - 20 x + 200}{4000 x \left(x - 20\right)}$$

Lisää integrointivakio:

$$\int{\frac{1}{\left(x^{2} - 20 x\right)^{2}} d x} = \frac{x \left(x - 20\right) \left(\ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{x - 20}\right| \right)}\right) - 20 x + 200}{4000 x \left(x - 20\right)}+C$$

Vastaus

$$$\int \frac{1}{\left(x^{2} - 20 x\right)^{2}}\, dx = \frac{x \left(x - 20\right) \left(\ln\left(\left|{x}\right|\right) - \ln\left(\left|{x - 20}\right|\right)\right) - 20 x + 200}{4000 x \left(x - 20\right)} + C$$$A


Please try a new game Rotatly